scholarly journals Parkin-mediated mitophagy as a potential therapeutic target for intervertebral disc degeneration

2018 ◽  
Vol 9 (10) ◽  
Author(s):  
Zengjie Zhang ◽  
Tianzhen Xu ◽  
Jiaoxiang Chen ◽  
Zhenxuan Shao ◽  
Ke Wang ◽  
...  
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Hamish T. J. Gilbert ◽  
Nathan Hodson ◽  
Pauline Baird ◽  
Stephen M. Richardson ◽  
Judith A. Hoyland

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Longxi Wu ◽  
Jieliang Shen ◽  
Xiaojun Zhang ◽  
Zhenming Hu

The intervertebral disc degeneration (IDD) is considered to be an initiator of a series of spinal diseases, among which changes in the nucleus pulposus (NP) are the most significant. NP cells reside in a microenvironment with a lack of blood vessels, hypoxia, and low glucose within the intervertebral disc. Due to the strong activity of HIF-1α, glycolysis is the main pathway for energy metabolism in NP cells. Our previous study found that higher SIRT1 expression is beneficial to delay the degeneration of NP cells. In order to find the downstream genes by which SIRT1 acts on NP cells, we used iTRAQ sequencing to detect the differences between degenerated NP cells overexpressing SIRT1 and a control group (human NP cells were derived from surgery) and found that the expression of LDHA changed in the same direction with SIRT1. This suggests that SIRT1 may delay the degeneration of NP cells by regulating glycolysis. We then used a Seahorse XFe24 analyzer to measure the bioenergetic parameters of NP cells and obtained three findings: (a) glycolysis is the main energy metabolism pathway in NP cells, (b) there is a large difference in ATP production between senescent cells and young cells, and (c) SIRT1 can regulate the production of ATP from glycolysis by regulating LDHA. We also found that SIRT1 in NP cells has a positive regulatory effect on c-Myc which is an upstream gene of LDHA. Through observing IDD-related indicators such as apoptosis, proliferation, senescence, and extracellular matrix, we found that SIRT1 can delay degeneration, and interference with c-Myc and LDHA, respectively, weakens the protective effect of SIRT1. Interfering with LDHA alone can also inhibit glycolysis and accelerate degeneration. Overall, we found that the inhibition of glycolysis in Np cells significantly affects their normal physiological functions and determined that LDHA is a potential therapeutic target for the treatment of IDD.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zhen Wang ◽  
Jianxiong Shen ◽  
Erwei Feng ◽  
Yang Jiao

As the principal reason for low back pain, intervertebral disc degeneration (IDD) affects the health of people around the world regardless of race or region. Degenerative discs display a series of characteristic pathological changes, including cell apoptosis, senescence, remodeling of extracellular matrix, oxidative stress and inflammatory local microenvironment. As a serine/threonine-protein kinase in eukaryocytes, AMP-activated protein kinase (AMPK) is involved in various cellular processes through the modulation of cell metabolism and energy balance. Recent studies have shown the abnormal activity of AMPK in degenerative disc cells. Besides, AMPK regulates multiple crucial biological behaviors in IDD. In this review, we summarize the pathophysiologic changes of IDD and activation process of AMPK. We also attempt to generalize the role of AMPK in the pathogenesis of IDD. Moreover, therapies targeting AMPK in alleviating IDD are analyzed, for better insight into the potential of AMPK as a therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document