scholarly journals Knockdown of cytokeratin 8 overcomes chemoresistance of chordoma cells by aggravating endoplasmic reticulum stress through PERK/eIF2α arm of unfolded protein response and blocking autophagy

2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Di Wang ◽  
Peiran Zhang ◽  
Xiaolong Xu ◽  
Jianhui Wang ◽  
Dong Wang ◽  
...  

AbstractChordoma is a malignant primary osseous spinal tumor with pronounced chemoresistance. However, the mechanisms of how chordoma cells develop chemoresistance are still not fully understood. Cytokeratin 8 (KRT8) is a molecular marker of notochordal cells, from which chordoma cells were believed to be originated. In this study, we showed that either doxorubicin or irinotecan promoted KRT8 expression in both CM319 and UCH1 cell lines, accompanied by an increased unfolded protein response and autophagy activity. Then, siRNA-mediated knockdown of KRT8 chemosensitized chordoma cells in vitro. Mechanistic studies showed that knockdown of KRT8 followed by chemotherapy aggravated endoplasmic reticulum stress through PERK/eIF2α arm of unfolded protein response and blocked late-stage autophagy. Moreover, suppression of the PERK/eIF2α arm of unfolded protein response using PERK inhibitor GSK2606414 partially rescued the apoptotic chordoma cells but did not reverse the blockage of the autophagy flux. Finally, tumor xenograft model further confirmed the chemosensitizing effects of siKRT8. This study represents the first systematic investigation into the role of KRT8 in chemoresistance of chordoma and our results highlight a possible strategy of targeting KRT8 to overcome chordoma chemoresistance.

2015 ◽  
Vol 6 (10) ◽  
pp. 3275-3281 ◽  
Author(s):  
Elena Giordano ◽  
Olivier Dangles ◽  
Njara Rakotomanomana ◽  
Silvia Baracchini ◽  
Francesco Visioli

Endoplasmic reticulum (ER) stress is important for atherosclerosis development and is mediated by the unfolded protein response (UPR).


2016 ◽  
Vol 1863 (11) ◽  
pp. 2604-2612 ◽  
Author(s):  
Erawan Borkham-Kamphorst ◽  
Bettina Therese Steffen ◽  
Eddy Van de Leur ◽  
Lidia Tihaa ◽  
Ute Haas ◽  
...  

2015 ◽  
Vol 112 (45) ◽  
pp. 14090-14095 ◽  
Author(s):  
Chandrashekara Kyathanahalli ◽  
Kenna Organ ◽  
Rebecca S. Moreci ◽  
Prashanth Anamthathmakula ◽  
Sonia S. Hassan ◽  
...  

We previously identified myometrial caspase-3 (CASP3) as a potential regulator of uterine quiescence. We also determined that during pregnancy, the functional activation of uterine CASP3 is likely governed by an integrated endoplasmic reticulum stress response (ERSR) and is consequently limited by an increased unfolded protein response (UPR). The present study examined the functional relevance of uterine UPR-ERSR in maintaining myometrial quiescence and regulating the timing of parturition. In vitro analysis of the human uterine myocyte hTERT-HM cell line revealed that tunicamycin (TM)-induced ERSR modified uterine myocyte contractile responsiveness. Accordingly, alteration of in vivo uterine UPR-ERSR using a pregnant mouse model significantly modified gestational length. We determined that “normal” gestational activation of the ERSR-induced CASP3 and caspase 7 (CASP7) maintains uterine quiescence through previously unidentified proteolytic targeting of the gap junction protein, alpha 1(GJA1); however, surprisingly, TM-induced uterine ERSR triggered an exaggerated UPR that eliminated uterine CASP3 and 7 tocolytic action precociously. These events allowed for a premature increase in myometrial GJA1 levels, elevated contractile responsiveness, and the onset of preterm labor. Importantly, a successful reversal of the magnified ERSR-induced preterm birth phenotype could be achieved by pretreatment with 4-phenylbutrate, a chaperone protein mimic.


Sign in / Sign up

Export Citation Format

Share Document