scholarly journals MicroRNA-93/STAT3 signalling pathway mediates retinal microglial activation and protects retinal ganglion cells in an acute ocular hypertension model

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yayi Wang ◽  
Shida Chen ◽  
Jiawei Wang ◽  
Yaoming Liu ◽  
Yang Chen ◽  
...  

AbstractGlaucoma is a common neurodegenerative disease and a leading cause of irreversible blindness worldwide. Retinal microglia-mediated neuroinflammation is involved in the process of optic nerve damage, but the mechanisms driving this microglial activation remain mostly elusive. Previous investigations reported that microRNAs are associated with the retinal microglial reaction and neural apoptosis. In the present study, we found that microRNA-93-5p (miR-93) played a key role in the reaction of retinal microglial cells in vivo and in vitro. The miR-93 level was significantly reduced in the retinae of rat acute ocular hypertension (AOH) models, which were accompanied by retinal microglial activation, overproduction of inflammatory cytokines, and subsequent retinal ganglion cells (RGCs) death, versus the retinae of controls. The induction of miR-93 overexpression significantly reduced microglial proliferation, migration and cytokine release, inhibited the expression of the target gene signal transducer and activator of transcription 3 (STAT3) and p-STAT3, and was associated with a reduced loss of RGCs. Treatment with a STAT3 inhibitor also decreased retinal microglial activation after AOH injury. Taken together, these results suggest that the miR-93/STAT3 pathway is directly related to the downregulation of retinal microglia-mediated neuro-inflammation and showed a neuroprotective effect. Regulating microglial activation through miR-93 may serve as a target for neuroprotective therapy in pathological ocular hypertension.

2021 ◽  
Vol 11 ◽  
Author(s):  
Huan-ran Zhou ◽  
Xue-fei Ma ◽  
Wen-jian Lin ◽  
Ming Hao ◽  
Xin-yang Yu ◽  
...  

GLP-1 analogs have been widely used to treat patients with type 2 diabetes in recent years and studies have found that GLP-1 analogs have multiple organ benefits. However, the role of GLP-1 analogs in diabetic retinopathy (DR), a common complication of diabetes mellitus (DM), remains controversial. Retinal ganglion cells (RGCs) are the only afferent neurons responsible for transmitting visual information to the visual center and are vulnerable in the early stage of DR. Protection of RGC is vital for visual function. The incretin glucagon-like peptide-1 (GLP-1), which is secreted by L-cells after food ingestion, could lower blood glucose level through stimulating the release of insulin. In the present study, we evaluated the effects of GLP-1 analog on RGCs both in vitro and in vivo. We established diabetic rat models in vivo and applied an RGC-5 cell line in vitro. The results showed that in high glucose conditions, GLP-1 analog alleviated the damage of RGCs. In addition, GLP-1 analog prevented mitophagy through the PINK1/Parkin pathway. Here we demonstrated the neuroprotective effect of GLP-1 analog, which may be beneficial for retinal function, and we further elucidated a novel mechanism in GLP-1 analog-regulated protection of the retina. These findings may expand the multi-organ benefits of GLP-1 analogs and provide new insights for the prevention of DR.


2009 ◽  
Vol 247 (10) ◽  
pp. 1353-1360 ◽  
Author(s):  
Akiyasu Kanamori ◽  
Maiko Naka ◽  
Masahide Fukuda ◽  
Makoto Nakamura ◽  
Akira Negi

2020 ◽  
Vol 104 ◽  
pp. 101747 ◽  
Author(s):  
Yun Ou-Yang ◽  
Zheng-Li Liu ◽  
Chun-Long Xu ◽  
Jia-Liang Wu ◽  
Jun Peng ◽  
...  

2006 ◽  
Vol 3 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Yuta Inokuchi ◽  
Masamitsu Shimazawa ◽  
Yoshimi Nakajima ◽  
Shinsuke Suemori ◽  
Satoshi Mishima ◽  
...  

Propolis, a honeybee product, has gained popularity as a food and alternative medicine. Its constituents have been shown to exert pharmacological (anticancer, antimicrobial and anti-inflammatory) effects. We investigated whether Brazilian green propolis exerts neuroprotective effects in the retinain vitroand/orin vivo.In vitro, retinal damage was induced by 24 h hydrogen peroxide (H2O2) exposure, and cell viability was measured by Hoechst 33342 and YO-PRO-1 staining or by a resazurin–reduction assay. Propolis inhibited the neurotoxicity and apoptosis induced in cultured retinal ganglion cells (RGC-5, a rat ganglion cell line transformed using E1A virus) by 24 h H2O2 exposure. Propolis also inhibited the neurotoxicity induced in RGC-5 cultures by staurosporine. Regarding the possible underlying mechanism, in pig retina homogenates propolis protected against oxidative stress (lipid peroxidation), as also did trolox (water-soluble vitamin E). In micein vivo, propolis (100 mg kg−1; intraperitoneally administered four times) reduced the retinal damage (decrease in retinal ganglion cells and in thickness of inner plexiform layer) induced by intravitrealin vivo N-methyl-d-aspartate injection. These findings indicate that Brazilian green propolis has neuroprotective effects against retinal damage bothin vitroandin vivo, and that a propolis-induced inhibition of oxidative stress may be partly responsible for these neuroprotective effects.


2012 ◽  
Vol 526 (1) ◽  
pp. 24-28 ◽  
Author(s):  
Bing Liu ◽  
Xiaohua Ma ◽  
Dadong Guo ◽  
Yuanyuan Guo ◽  
Ninghong Chen ◽  
...  

2009 ◽  
Vol 88 (3) ◽  
pp. 535-541 ◽  
Author(s):  
Akiyasu Kanamori ◽  
Maiko Naka ◽  
Masahide Fukuda ◽  
Makoto Nakamura ◽  
Akira Negi

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Bikun Xian ◽  
Ziming Luo ◽  
Kaijing Li ◽  
Kang Li ◽  
Mingjun Tang ◽  
...  

We investigated the efficacy of the immunosuppressants rapamycin (RAP) and dexamethasone (DEX) in improving the survival of retinal organoids after epiretinal transplantation. We first compared the immunosuppressive abilities of DEX and RAP in activated microglia in an in vitro setting. Following this, we used immunofluorescence, real-time polymerase chain reaction, and flow cytometry to investigate the effects of DEX and RAP on cells in the retinal organoids. Retinal organoids were then seeded onto poly(lactic-co-glycolic) acid (PLGA) scaffolds and implanted into rhesus monkey eyes (including a healthy individual and three monkeys with chronic ocular hypertension (OHT) induction) and subjected to different post-operative immunosuppressant treatments; 8 weeks after the experiment, histological examinations were carried out to assess the success of the different treatments. Our in vitro experiments indicated that both DEX and RAP treatments were equally effective in suppressing microglial activity. Although both immunosuppressants altered the morphologies of cells in the retinal organoids and caused a slight decrease in the differentiation of cells into retinal ganglion cells, the organoid cells retained their capacity to grow and differentiate into retinal tissues. Our in vivo experiments indicate that the retinal organoid can survive and differentiate into retinal tissues in a healthy rhesus monkey eye without immunosuppressive treatment. However, the survival and differentiation of these organoids in OHT eyes was successful only with the DEX treatment. RAP treatment was ineffective in preventing immunological rejection, and the retinal organoid failed to survive until the end of 8 weeks. DEX is likely a promising immunosuppressant to enhance the survival of epiretinal implants.


Sign in / Sign up

Export Citation Format

Share Document