scholarly journals PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins

Cell Research ◽  
2019 ◽  
Vol 29 (3) ◽  
pp. 233-247 ◽  
Author(s):  
Yongjia Duan ◽  
Aiying Du ◽  
Jinge Gu ◽  
Gang Duan ◽  
Chen Wang ◽  
...  
2019 ◽  
Author(s):  
Ye Fu ◽  
Xiaowei Zhuang

AbstractDiverse RNAs and RNA-binding proteins form phase-separated, membraneless granules in cells under stress conditions. However, the role of the prevalent mRNA methylation, m6A, and its binding proteins in stress granule (SG) assembly remain unclear. Here, we show that m6A-modified mRNAs are enriched in SGs, and that m6A-binding YTHDF proteins are critical for SG formation. Depletion of YTHDF1/3 inhibits SG formation and recruitment of m6A-modified mRNAs to SGs. Both the N-terminal intrinsically disordered region and the C-terminal m6A-binding YTH domain of YTHDF proteins are crucial for SG formation. Super-resolution imaging further reveals that YTHDF proteins are in a super-saturated state, forming clusters that reside in the periphery of and at the junctions between SG core clusters, and promote SG phase separation by reducing the activation energy barrier and critical size for condensate formation. Our results reveal a new function and mechanistic insights of the m6A-binding YTHDF proteins in regulating phase separation.


2020 ◽  
Vol 117 (15) ◽  
pp. 8503-8514 ◽  
Author(s):  
Benjamin Bourgeois ◽  
Saskia Hutten ◽  
Benjamin Gottschalk ◽  
Mario Hofweber ◽  
Gesa Richter ◽  
...  

The specific interaction of importins with nuclear localization signals (NLSs) of cargo proteins not only mediates nuclear import but also, prevents their aberrant phase separation and stress granule recruitment in the cytoplasm. The importin Transportin-1 (TNPO1) plays a key role in the (patho-)physiology of both processes. Here, we report that both TNPO1 and Transportin-3 (TNPO3) recognize two nonclassical NLSs within the cold-inducible RNA-binding protein (CIRBP). Our biophysical investigations show that TNPO1 recognizes an arginine-glycine(-glycine) (RG/RGG)–rich region, whereas TNPO3 recognizes a region rich in arginine-serine-tyrosine (RSY) residues. These interactions regulate nuclear localization, phase separation, and stress granule recruitment of CIRBP in cells. The presence of both RG/RGG and RSY regions in numerous other RNA-binding proteins suggests that the interaction of TNPO1 and TNPO3 with these nonclassical NLSs may regulate the formation of membraneless organelles and subcellular localization of numerous proteins.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ravi Kumar Alluri ◽  
Zhongwei Li ◽  
Keith R. McCrae

Reactive oxygen species (ROS) generated under oxidative stress (OS) cause oxidative damage to RNA. Recent studies have suggested a role for oxidized RNA in several human disorders. Under the conditions of oxidative stress, mRNAs released from polysome dissociation accumulate and initiate stress granule (SG) assembly. SGs are highly enriched in mRNAs, containing inverted repeat (IR) Alus in 3′ UTRs, AU-rich elements, and RNA-binding proteins. SGs and processing bodies (P-bodies) transiently interact through a docking mechanism to allow the exchange of RNA species. However, the types of RNA species exchanged, and the mechanisms and outcomes of exchange are still unknown. Specialized RNA-binding proteins, including adenosine deaminase acting on RNA (ADAR1-p150), with an affinity toward inverted repeat Alus, and Tudor staphylococcal nuclease (Tudor-SN) are specifically recruited to SGs under OS along with an RNA transport protein, Staufen1 (STAU1), but their precise biochemical roles in SGs and SG/P-body docking are uncertain. Here, we critically review relevant literature and propose a hypothetical mechanism for the processing and decay of oxidized-RNA in SGs/P-bodies, as well as the role of ADAR1-p150, Tudor-SN, and STAU1.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Joshua R Wheeler ◽  
Tyler Matheny ◽  
Saumya Jain ◽  
Robert Abrisch ◽  
Roy Parker

Stress granules are non-membrane bound RNA-protein (RNP) assemblies that form when translation initiation is limited and contain a biphasic structure with stable core structures surrounded by a less concentrated shell. The order of assembly and disassembly of these two structures remains unknown. Time course analysis of granule assembly suggests that core formation is an early event in granule assembly. Stress granule disassembly is also a stepwise process with shell dissipation followed by core clearance. Perturbations that alter liquid-liquid phase separations (LLPS) driven by intrinsically disordered protein regions (IDR) of RNA binding proteins in vitro have the opposite effect on stress granule assembly in vivo. Taken together, these observations argue that stress granules assemble through a multistep process initiated by stable assembly of untranslated mRNPs into core structures, which could provide sufficient high local concentrations to allow for a localized LLPS driven by IDRs on RNA binding proteins.


2018 ◽  
Vol 131 (11) ◽  
pp. jcs214692 ◽  
Author(s):  
Alexandre Maucuer ◽  
Bénédicte Desforges ◽  
Vandana Joshi ◽  
Mirela Boca ◽  
Dmitry A. Kretov ◽  
...  

2021 ◽  
Vol 118 (50) ◽  
pp. e2109668118
Author(s):  
Ga Hye Kim ◽  
Ilmin Kwon

Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins that control key events in RNA biogenesis under both normal and diseased cellular conditions. The low-complexity (LC) domain of hnRNPs can become liquid-like droplets or reversible amyloid-like polymers by phase separation. Yet, whether phase separation of the LC domains contributes to physiological functions of hnRNPs remains unclear. hnRNPH1 contains two LC domains, LC1 and LC2. Here, we show that reversible phase separation of the LC1 domain is critical for both interaction with different kinds of RNA-binding proteins and control of the alternative-splicing activity of hnRNPH1. Interestingly, although not required for phase separation, the LC2 domain contributes to the robust transcriptional activation of hnRNPH1 when fused to the DNA-binding domain, as found recently in acute lymphoblastic leukemia. Our data suggest that the ability of the LC1 domain to phase-separate into reversible polymers or liquid-like droplets is essential for function of hnRNPH1 as an alternative RNA-splicing regulator, whereas the LC2 domain may contribute to the aberrant transcriptional activity responsible for cancer transformation.


Sign in / Sign up

Export Citation Format

Share Document