scholarly journals Molecular definition of multiple sites of antibody inhibition of malaria transmission-blocking vaccine antigen Pfs25

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Stephen W. Scally ◽  
Brandon McLeod ◽  
Alexandre Bosch ◽  
Kazutoyo Miura ◽  
Qi Liang ◽  
...  
2017 ◽  
Vol 292 (28) ◽  
pp. 11960-11969 ◽  
Author(s):  
Guodong Niu ◽  
Caio Franc̨a ◽  
Genwei Zhang ◽  
Wanlapa Roobsoong ◽  
Wang Nguitragool ◽  
...  

npj Vaccines ◽  
2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Kazutoyo Miura ◽  
Eizo Takashima ◽  
Thao P. Pham ◽  
Bingbing Deng ◽  
Luwen Zhou ◽  
...  

AbstractPfs230 is a leading malaria transmission blocking vaccine (TBV) candidate. Comprising 3135 amino acids (aa), the large size of Pfs230 necessitates the use of sub-fragments as vaccine immunogens. Therefore, determination of which regions induce functional antibody responses is essential. We previously reported that of 27 sub-fragments spanning the entire molecule, only five induced functional antibodies. A “functional” antibody is defined herein as one that inhibits Plasmodium falciparum parasite development in mosquitoes in a standard membrane-feeding assay (SMFA). These five sub-fragments were found within the aa 443–1274 range, and all contained aa 543–730. Here, we further pinpoint the location of epitopes within Pfs230 that are recognized by functional antibodies using antibody depletion and enrichment techniques. Functional epitopes were not found within the aa 918–1274 region. Within aa 443–917, further analysis showed the existence of functional epitopes not only within the aa 543–730 region but also outside of it. Affinity-purified antibodies using a synthetic peptide matching aa 543–588 showed activity in the SMFA. Immunization with a synthetic peptide comprising this segment, formulated either as a carrier-protein conjugate vaccine or with a liposomal vaccine adjuvant system, induced antibodies in mice that were functional in the SMFA. These findings provide key insights for Pfs230-based vaccine design and establish the feasibility for the use of synthetic peptide antigens for a malaria TBV.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Nicole G. Bender ◽  
Prachi Khare ◽  
Juan Martinez ◽  
Rebecca E. Tweedell ◽  
Vincent O. Nyasembe ◽  
...  

AbstractMalaria transmission-blocking vaccines (TBVs) prevent the completion of the developmental lifecycle of malarial parasites within the mosquito vector, effectively blocking subsequent infections. The mosquito midgut protein Anopheline alanyl aminopeptidase N (AnAPN1) is the leading, mosquito-based TBV antigen. Structure-function studies identified two Class II epitopes that can induce potent transmission-blocking (T-B) antibodies, informing the design of the next-generation AnAPN1. Here, we functionally screened new immunogens and down-selected to the UF6b construct that has two glycine-linked copies of the T-B epitopes. We then established a process for manufacturing UF6b and evaluated in outbred female CD1 mice the immunogenicity of the preclinical product with the human-safe adjuvant Glucopyranosyl Lipid Adjuvant in a liposomal formulation with saponin QS21 (GLA-LSQ). UF6b:GLA-LSQ effectively immunofocused the humoral response to one of the key T-B epitopes resulting in potent T-B activity, underscoring UF6b as a prime TBV candidate to aid in malaria elimination and eradication efforts.


2020 ◽  
Author(s):  
Nicole G. Bender ◽  
Prachi Khare ◽  
Juan Martinez ◽  
Rebecca E. Tweedell ◽  
Vincent O. Nyasembe ◽  
...  

AbstractMalaria transmission-blocking vaccines (TBVs) are a critical tool for disease elimination. TBVs prevent completion of the developmental lifecycle of malarial parasites within the mosquito vector, effectively blocking subsequent infections. The mosquito midgut protein Anopheline alanyl aminopeptidase N (AnAPN1) is the leading, mosquito-based TBV antigen and structure-function studies have identified two Class II epitopes that induce potent transmission-blocking (T-B) antibodies. Here, we functionally screened new immunogens and down-selected to the UF6b construct that has two glycine-linked copies of the T-B epitopes. We established a process for manufacturing UF6b and evaluated in outbred female CD1 mice the immunogenicity of the preclinical product with the human-safe adjuvant Glucopyranosyl Lipid Adjuvant in a liposomal formulation with saponin QS21 (GLA-LSQ). UF6b:GLA-LSQ was immunogenic and immunofocused the humoral response to one of the key T-B epitopes resulting in potent T-B activity and establishing UF6b as a prime TBV candidate to aid in malaria elimination and eradication efforts.


2018 ◽  
Vol 74 (a1) ◽  
pp. a255-a255
Author(s):  
Brandon McLeod ◽  
Kazutoyo Miura ◽  
Stephen W. Scally ◽  
Alexandre Bosch ◽  
Sebastian Rämisch ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Anais Bompard ◽  
Dari F. Da ◽  
Rakiswendé S. Yerbanga ◽  
Sumi Biswas ◽  
Melissa Kapulu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document