vaccine target
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 28)

H-INDEX

23
(FIVE YEARS 5)

Author(s):  
Mamadou Alpha Diallo ◽  
Coralie L’Ollivier ◽  
Khadim Diongue ◽  
Aida Sadikh Badiane ◽  
Aly Kodio ◽  
...  

The RTS,S/AS01 malaria vaccine confers only moderate protection against malaria. Evidence suggests that the effectiveness of the RTS,S/AS01 vaccine depends upon the parasite population genetics, specifically regarding the circumsporozoite protein haplotypes in the population. We investigated Plasmodium falciparum circumsporozoite protein (PfCSP) gene sequences from two endemic sites in 2018 in Senegal. The PfCSP sequences were compared with those retrieved from the Pf3k genome database. In the central repeat region of PfCSP, the distribution of haplotypes differed significantly between the two study sites (Fisher’s exact test, P < 0.001). No 3D7 vaccine strain haplotype was observed in this locus. In the C-terminal region, there was no significant difference in haplotypes distribution between Kedougou and Diourbel (Fischer’s exact test, P = 0.122). The 3D7 haplotype frequency was 8.4% in early samples (2001–2011), but then it contracted in the subsequent years. The extensive plasticity of the P. falciparum genes coding the RTS,S/AS01 vaccine target antigens may influence the immune responses to circulating alleles. Monitoring the genetic diversity baseline and its dynamics over time and space would be instrumental in rationally improving the malaria RTS,S/AS01 vaccine and/or its implementation schedule.


Author(s):  
Barbara Ensoli ◽  
Sonia Moretti ◽  
Alessandra Borsetti ◽  
Maria Teresa Maggiorella ◽  
Stefano Buttò ◽  
...  
Keyword(s):  

Author(s):  
Erasmia Rouka ◽  
Konstantinos I. Gourgoulianis ◽  
Sotirios G. Zarogiannis

Viroporins, integral viral membrane ion channel proteins, interact with host-cell proteins deregulating physiological processes and activating inflammasomes. Severity of COVID-19 might be associated with hyperinflammation, thus we aimed at the complete immunoinformatic analysis of the SARS-CoV-2 viroporin E, P0DTC4. We also identified the human proteins interacting with P0DTC4 and the enriched molecular functions of the corresponding genes. The complete sequence of P0DTC4 in FASTA format was processed in 10 databases relative to secondary and tertiary protein structure analyses and prediction of optimal vaccine epitopes. Three more databases were accessed for the retrieval and the molecular functional characterization of the P0DTC4 human interactors. The immunoinformatics analysis resulted in the identification of 4 discontinuous B-cell epitopes along with 1 linear B-cell epitope and 11 T-cell epitopes which were found to be antigenic, immunogenic, non-allergen, non-toxin and unable to induce autoimmunity thus fulfilling prerequisites for vaccine design. The functional enrichment analysis showed that the predicted host interactors of P0DTC4 target the cellular acetylation network. Two of the identified host-cell proteins-BRD2 and BRD4- have been shown to be promising targets for anti-viral therapy. Thus, our findings have implications for COVID-19 therapy and indicate that viroporin E could serve as a promising vaccine target against SARS-CoV-2. Validation experiments are required to complement these in-silico results.


Headline DENMARK: Vaccine target puts pressure on EU countries


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adam J. Moore ◽  
Khadidiatou Mangou ◽  
Fatoumata Diallo ◽  
Seynabou D. Sene ◽  
Mariama N. Pouye ◽  
...  

AbstractThe PfRh5-Basigin ligand–receptor interaction is an essential step in the merozoite invasion process and represents an attractive vaccine target. To reveal genotype–phenotype associations between naturally occurring allelic variants of PfRh5 and invasion inhibition, we performed ex vivo invasion inhibition assays with monoclonal antibodies targeting basigin coupled with PfRh5 next-generation amplicon sequencing. We found dose-dependent inhibition of invasion across all isolates tested, and no statistically significant difference in invasion inhibition for any single nucleotide polymorphisms. This study demonstrates that PfRh5 remains highly conserved and functionally essential, even in a highly endemic setting, supporting continued development as a strain-transcendent malaria vaccine target.


F1000Research ◽  
2021 ◽  
Vol 9 ◽  
pp. 52
Author(s):  
Veljko Veljkovic ◽  
Júlia Vergara-Alert ◽  
Joaquim Segalés ◽  
Slobodan Paessler

A novel coronavirus recently identified in Wuhan, China (SARS-CoV-2) has expanded the number of highly pathogenic coronaviruses affecting humans. The SARS-CoV-2 represents a potential epidemic or pandemic threat, which requires a quick response for preparedness against this infection. The present report uses the informational spectrum methodology to identify the possible origin and natural host of the new virus, as well as putative therapeutic and vaccine targets. The performed in silico analysis indicates that the newly emerging SARS-CoV-2 is closely related to severe acute respiratory syndrome (SARS)-CoV and, to a lesser degree, Middle East respiratory syndrome (MERS)-CoV. Moreover, the well-known SARS-CoV receptor (ACE2) might be a putative receptor for the novel virus as well. Actin protein was also suggested as a host factor that participates in cell entry and pathogenesis of SARS-CoV-2; therefore, drugs modulating biological activity of this protein (e.g. ibuprofen) were suggested as potential candidates for treatment of this viral infection. Additional results indicated that civets and poultry are potential candidates for the natural reservoir of the SARS-CoV-2, and that domain 288-330 of S1 protein from the SARS-CoV-2 represents promising therapeutic and/or vaccine target.


2021 ◽  
Vol 249 (3317) ◽  
pp. 10
Author(s):  
Adam Vaughan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document