scholarly journals Functionally impaired plasmacytoid dendritic cells and non-haematopoietic sources of type I interferon characterize human autoimmunity

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Antonios Psarras ◽  
Adewonuola Alase ◽  
Agne Antanaviciute ◽  
Ian M. Carr ◽  
Md Yuzaiful Md Yusof ◽  
...  

AbstractAutoimmune connective tissue diseases arise in a stepwise fashion from asymptomatic preclinical autoimmunity. Type I interferons have a crucial role in the progression to established autoimmune diseases. The cellular source and regulation in disease initiation of these cytokines is not clear, but plasmacytoid dendritic cells have been thought to contribute to excessive type I interferon production. Here, we show that in preclinical autoimmunity and established systemic lupus erythematosus, plasmacytoid dendritic cells are not effector cells, have lost capacity for Toll-like-receptor-mediated cytokine production and do not induce T cell activation, independent of disease activity and the blood interferon signature. In addition, plasmacytoid dendritic cells have a transcriptional signature indicative of cellular stress and senescence accompanied by increased telomere erosion. In preclinical autoimmunity, we show a marked enrichment of an interferon signature in the skin without infiltrating immune cells, but with interferon-κ production by keratinocytes. In conclusion, non-hematopoietic cellular sources, rather than plasmacytoid dendritic cells, are responsible for interferon production prior to clinical autoimmunity.

2018 ◽  
Author(s):  
Antonios Psarras ◽  
Adewonuola Alase ◽  
Agne Antanaviciute ◽  
Ian M. Carr ◽  
Md Yuzaiful Md Yusof ◽  
...  

ABSTRACTAutoimmune connective tissue diseases arise in a stepwise fashion from asymptomatic preclinical autoimmunity. Type I interferons (IFNs) have a crucial role in the progression to established autoimmune diseases such as systemic lupus erythematosus (SLE). However, their cellular source and regulation in disease initiation are unclear. The current paradigm suggests that plasmacytoid dendritic cells (pDCs) are activated in SLE contributing to excessive IFN production. Here, we show that in preclinical autoimmunity, established SLE, and primary Sjögren’s Syndrome, pDCs are not effector cells, but rather have lost their capacity for TLR-mediated IFN-α and TNF production and fail to induce T cell activation, independently of disease activity and blood IFN signature. In addition, pDCs present a transcriptional signature of cellular stress and senescence accompanied by increased telomere erosion. Instead, we demonstrate a marked enrichment of IFN signature in non-lesional skin in preclinical autoimmunity. In these individuals and SLE patients, type I IFNs were abundantly produced by keratinocytes in the absence of infiltrating leucocytes. These findings revise our understanding of the role of IFN in the initiation of human autoimmunity, with non-haematopoietic tissues perpetuating IFN responses, which in turn predict clinical disease. These data indicate potential therapeutic targets outside the conventional immune system for treatment and prevention.


2007 ◽  
Vol 81 (18) ◽  
pp. 9778-9789 ◽  
Author(s):  
Janet L. Weslow-Schmidt ◽  
Nancy A. Jewell ◽  
Sara E. Mertz ◽  
J. Pedro Simas ◽  
Joan E. Durbin ◽  
...  

ABSTRACT The respiratory tract is a major mucosal site for microorganism entry into the body, and type I interferon (IFN) and dendritic cells constitute a first line of defense against viral infections. We have analyzed the interaction between a model DNA virus, plasmacytoid dendritic cells, and type I IFN during lung infection of mice. Our data show that murine gammaherpesvirus 68 (γHV68) inhibits type I IFN secretion by dendritic cells and that plasmacytoid dendritic cells are necessary for conventional dendritic cell maturation in response to γHV68. Following γHV68 intranasal inoculation, the local and systemic IFN-α/β response is below detectable levels, and plasmacytoid dendritic cells are activated and recruited into the lung with a tissue distribution that differs from that of conventional dendritic cells. Our results suggest that plasmacytoid dendritic cells and type I IFN have important but independent roles during the early response to a respiratory γHV68 infection. γHV68 infection inhibits type I IFN production by dendritic cells and is a poor inducer of IFN-α/β in vivo, which may serve as an immune evasion strategy.


2016 ◽  
Vol 33 (3) ◽  
pp. 301-306 ◽  
Author(s):  
Dana Badr ◽  
Rami Abadi ◽  
Mazen Kurban ◽  
Ossama Abbas

Immunity ◽  
2011 ◽  
Vol 34 (3) ◽  
pp. 352-363 ◽  
Author(s):  
Tatsuya Saitoh ◽  
Takashi Satoh ◽  
Naoki Yamamoto ◽  
Satoshi Uematsu ◽  
Osamu Takeuchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document