type i ifn
Recently Published Documents


TOTAL DOCUMENTS

1258
(FIVE YEARS 421)

H-INDEX

98
(FIVE YEARS 12)

Author(s):  
Sumaiah S. Al-Asmari ◽  
Aleksandra Rajapakse ◽  
Tomalika R. Ullah ◽  
Geneviève Pépin ◽  
Laura V. Croft ◽  
...  

Activation of the STING pathway upon genotoxic treatment of cancer cells has been shown to lead to anti-tumoral effects, mediated through the acute production of interferon (IFN)-β. Conversely, the pathway also correlates with the expression of NF-κB-driven pro-tumorigenic genes, but these associations are only poorly defined in the context of genotoxic treatment, and are thought to correlate with a chronic engagement of the pathway. We demonstrate here that half of the STING-expressing cancer cells from the NCI60 panel rapidly increased expression of pro-tumorigenic IL-6 upon genotoxic DNA damage, often independent of type-I IFN responses. While preferentially dependent on canonical STING, we demonstrate that genotoxic DNA damage induced by camptothecin (CPT) also drove IL-6 production through non-canonical STING signaling in selected cancer cells. Consequently, pharmacological inhibition of canonical STING failed to broadly inhibit IL-6 production induced by CPT, although this could be achieved through downstream ERK1/2 inhibition. Finally, prolonged inhibition of canonical STING signaling was associated with increased colony formation of MG-63 cells, highlighting the duality of STING signaling in also restraining the growth of selected cancer cells. Collectively, our findings demonstrate that genotoxic-induced DNA damage frequently leads to the rapid production of pro-tumorigenic IL-6 in cancer cells, independent of an IFN signature, through canonical and non-canonical STING activation; this underlines the complexity of STING engagement in human cancer cells, with frequent acute pro-tumorigenic activities induced by DNA damage. We propose that inhibition of ERK1/2 may help curb such pro-tumorigenic responses to DNA-damage, while preserving the anti-proliferative effects of the STING-interferon axis.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Lili Gu ◽  
David Casserly ◽  
Gareth Brady ◽  
Susan Carpenter ◽  
Adrian P. Bracken ◽  
...  

AbstractType I interferons (IFNs) are critical for anti-viral responses, and also drive autoimmunity when dysregulated. Upon viral sensing, monocytes elicit a sequential cascade of IFNβ and IFNα production involving feedback amplification, but how exactly this cascade is regulated in human cells is incompletely understood. Here we show that the PYHIN protein myeloid cell nuclear differentiation antigen (MNDA) is required for IFNα induction in monocytes. Unlike other PYHINs, this is not due to a pathogen sensing role, but rather MNDA regulated expression of IRF7, a transcription factor essential for IFNα induction. Mechanistically, MNDA is required for recruitment of STAT2 and RNA polymerase II to the IRF7 gene promoter, and in fact MNDA is itself recruited to the IRF7 promoter after type I IFN stimulation. These data implicate MNDA as a critical regulator of the type I IFN cascade in human myeloid cells and reveal a new role for human PYHINs in innate immune gene induction.


2022 ◽  
pp. ji2100684
Author(s):  
Chao Sui ◽  
Tongyang Xiao ◽  
Shengyuan Zhang ◽  
Hongxiang Zeng ◽  
Yi Zheng ◽  
...  

2022 ◽  
Vol 14 (1) ◽  
pp. 99
Author(s):  
Yuna Chang ◽  
Ji-Seon Kang ◽  
Keehoon Jung ◽  
Doo Hyun Chung ◽  
Sang-Jun Ha ◽  
...  

2021 ◽  
Vol 119 (1) ◽  
pp. e2111115119
Author(s):  
Zhongshun Liu ◽  
Congwei Jiang ◽  
Zhangmengxue Lei ◽  
Sihan Dong ◽  
Linlin Kuang ◽  
...  

Type I interferons (IFNs) are the first frontline of the host innate immune response against invading pathogens. Herein, we characterized an unknown protein encoded by phospholipase A2 inhibitor and LY6/PLAUR domain-containing (PINLYP) gene that interacted with TBK1 and induced type I IFN in a TBK1- and IRF3-dependent manner. Loss of PINLYP impaired the activation of IRF3 and production of IFN-β induced by DNA virus, RNA virus, and various Toll-like receptor ligands in multiple cell types. Because PINLYP deficiency in mice engendered an early embryonic lethality in mice, we generated a conditional mouse in which PINLYP was depleted in dendritic cells. Mice lacking PINLYP in dendritic cells were defective in type I IFN induction and more susceptible to lethal virus infection. Thus, PINLYP is a positive regulator of type I IFN innate immunity and important for effective host defense against viral infection.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 67
Author(s):  
Maria Ansar ◽  
Yue Qu ◽  
Teodora Ivanciuc ◽  
Roberto P. Garofalo ◽  
Antonella Casola

Respiratory syncytial virus (RSV) infection in mouse and human lung is associated with pathogenic inflammation and oxidative injury. RSV impairs antioxidant responses by increasing the degradation of transcription factor NF-E2-related factor 2 (NRF2), which controls the expression of several antioxidant enzymes (AOEs). In addition to its protective effects, type I IFNs have been increasingly recognized as important mediators of host pathogenic responses during acute respiratory viral infections. We used a mouse model of RSV infection to investigate the effect of lack of type I interferon (IFN) receptor on viral-mediated clinical disease, airway inflammation, NRF2 expression, and antioxidant defenses. In the absence of type I IFN signaling, RSV-infected mice showed significantly less body weight loss and airway obstruction, as well as a significant reduction in cytokine and chemokine secretion and airway inflammation. Lack of type I IFN receptor was associated with greatly reduced virus-induced promyelocytic leukemia lung protein expression, which we showed to be necessary for virus-induced NRF2 degradation in a cell model of infection, resulting in restoration of NRF2 levels, AOE expression, and airway antioxidant capacity. Our data support the concept that modulation of type I IFN production and/or signaling could represent an important therapeutic strategy to ameliorate severity of RSV-induced lung disease.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2441
Author(s):  
Macauley Locke ◽  
Grant Lythe ◽  
Martín López-García ◽  
César Muñoz-Fontela ◽  
Miles Carroll ◽  
...  

Type I interferons (IFNs) are cytokines with both antiviral properties and protective roles in innate immune responses to viral infection. They induce an antiviral cellular state and link innate and adaptive immune responses. Yet, viruses have evolved different strategies to inhibit such host responses. One of them is the existence of viral proteins which subvert type I IFN responses to allow quick and successful viral replication, thus, sustaining the infection within a host. We propose mathematical models to characterise the intra-cellular mechanisms involved in viral protein antagonism of type I IFN responses, and compare three different molecular inhibition strategies. We study the Ebola viral protein, VP35, with this mathematical approach. Approximate Bayesian computation sequential Monte Carlo, together with experimental data and the mathematical models proposed, are used to perform model calibration, as well as model selection of the different hypotheses considered. Finally, we assess if model parameters are identifiable and discuss how such identifiability can be improved with new experimental data.


2021 ◽  
Author(s):  
Mengdi Xue ◽  
Hongyang Liu ◽  
Zhaoxia Zhang ◽  
Chunying Feng ◽  
Kunli Zhang ◽  
...  

AbstractHost nucleic acid receptors can recognize the viral DNA or RNA upon virus infection, which further triggers multiple signal pathways to promote the translocation of the interferon regulatory factor 3 (IRF3) into nucleus and produce type I interferon (IFN), leading to the host antiviral response. Here, we report a novel negative regulator Annexin A2 (ANXA2) that regulates type I IFN production through multiple mechanisms. Ectopic expression of ANXA2 inhibited the production of type I IFN induced by DNA- and RNA viruses and enhanced virus replication, while knockout of ANXA2 expression enhanced the production of type I IFN and inhibited virus replication. Mechanistically, ANXA2 not only disrupted MDA5 recruiting MAVS, but also inhibited the interaction between MAVS and TRAF3 upon RNA virus infection. In addition, ANXA2 impacted the translocation of STING from endoplasmic reticulum to Golgi apparatus upon DNA virus infection. Interestingly, ANXA2 also inhibited IRF3 phosphorylation and nuclear translocation through competing with TANK-binds kinase 1 (TBK1) and inhibitor-κB kinase ε (IKKε) for binding to IRF3. Anxa2 deficiency in vivo increased the production of type I IFN, which resulted in suppression of encephalomyocarditis virus (EMCV) replication. Our findings reveal that ANXA2, as a negative regulator of type I IFN production, plays an important role in regulating the host antiviral responses.Author summaryAnnexin is a family of evolutionarily conserved multi-gene proteins, which are widely distributed in various tissues and cells of plants and animals. These proteins can reversibly bind to phospholipid membranes and to calcium ions (Ca2+). To date, several studies have confirmed that some members of the Annexin family regulate the antiviral innate immune response. Until now, regulation of the production of type I IFN by ANXA2 is not reported. In this study, ANXA2 were found to strongly inhibit the production of type I IFN, leading to increased virus replication while knockout of ANXA2 expression inhibited virus replication by increasing the amount of IFN. Compared with wild-type littermates, ANXA2 deficiency mice produced more type I IFN to inhibit virus replication. Our results provide methanistic insights into the novel role of ANXA2 in the antiviral innate immune responses.


Sign in / Sign up

Export Citation Format

Share Document