scholarly journals Segment-specific optogenetic stimulation in Drosophila melanogaster with linear arrays of organic light-emitting diodes

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Caroline Murawski ◽  
Stefan R. Pulver ◽  
Malte C. Gather

AbstractOptogenetics allows light-driven, non-contact control of neural systems, but light delivery remains challenging, in particular when fine spatial control of light is required to achieve local specificity. Here, we employ organic light-emitting diodes (OLEDs) that are micropatterned into linear arrays to obtain precise optogenetic control in Drosophila melanogaster larvae expressing the light-gated activator CsChrimson and the inhibitor GtACR2 within their peripheral sensory system. Our method allows confinement of light stimuli to within individual abdominal segments, which facilitates the study of larval behaviour in response to local sensory input. We show controlled triggering of specific crawling modes and find that targeted neurostimulation in abdominal segments switches the direction of crawling. More broadly, our work demonstrates how OLEDs can provide tailored patterns of light for photo-stimulation of neuronal networks, with future implications ranging from mapping neuronal connectivity in cultures to targeted photo-stimulation with pixelated OLED implants in vivo.

Author(s):  
Caroline Murawski ◽  
Stefan R. Pulver ◽  
Malte C. Gather

AbstractOptogenetics allows light-driven, non-contact control of neural systems, but light delivery remains challenging, in particular when fine spatial control of light is required to achieve local specificity. Here, we employ organic light-emitting diodes (OLEDs) that are micropatterned into linear arrays to obtain precise optogenetic control in Drosophila melanogaster larvae expressing the light-gated activator CsChrimson and the inhibitor GtACR2 within their peripheral sensory system. Our method allows confinement of light stimuli to within individual abdominal segments, which facilitates the study of larval behaviour in response to local sensory input. We show controlled triggering of specific crawling modes and find that targeted neurostimulation in abdominal segments switches the direction of crawling. More broadly, our work demonstrates how OLEDs can provide tailored patterns of light for photo-stimulation of neuronal networks, with future implications ranging from mapping neuronal connectivity in cultures to targeted photo-stimulation with pixelated OLED implants in vivo.


2021 ◽  
Author(s):  
Bruno F.E. Matarese

Prototype fully biocompatible organic light-emitting diodes are investigated, with a view to creating a suitable and high-performance light source as a medical implant device. A selection of organic LED materials that have potential suitability for the biological environment are examined. First, the biocompatibility of selected OLED materials was evaluated by the study of cell adhesion and cytotoxicity of HeLa cells cultured on the candidate materials. Thus it was possible to design a device structure composed entirely of biocompatible materials. Second, the characterization of the electroluminescence properties of the prototype OLED is shown and its limitation evaluated. Third, the aqueous stability of the fully biocompatible light source is examined. There is strong evidence that fully biocompatible and stable light-emitting implant devices can be easily constructed. This is the first time a fully biocompatible organic light-emitting diode, albeit embryonic, is reported, with the hope that it may lead to further research to optimize the device performance. Some suggestions on suitable device properties towards in vivo transition are provided.


2011 ◽  
Author(s):  
Merric Srour ◽  
Richard Fu ◽  
Steven Blomquist ◽  
Jianmin Shi ◽  
Eric Forsythe ◽  
...  

2020 ◽  
Vol 16 (9) ◽  
pp. 5845-5851
Author(s):  
Alexander V. Yakubovich ◽  
Won-Joon Son ◽  
Ohyun Kwon ◽  
Hyeonho Choi ◽  
Byoungki Choi ◽  
...  

2021 ◽  
Vol 15 (3) ◽  
pp. 208-215 ◽  
Author(s):  
Soon Ok Jeon ◽  
Kyung Hyung Lee ◽  
Jong Soo Kim ◽  
Soo-Ghang Ihn ◽  
Yeon Sook Chung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document