scholarly journals SepF is the FtsZ anchor in archaea, with features of an ancestral cell division system

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nika Pende ◽  
Adrià Sogues ◽  
Daniela Megrian ◽  
Anna Sartori-Rupp ◽  
Patrick England ◽  
...  

AbstractMost archaea divide by binary fission using an FtsZ-based system similar to that of bacteria, but they lack many of the divisome components described in model bacterial organisms. Notably, among the multiple factors that tether FtsZ to the membrane during bacterial cell constriction, archaea only possess SepF-like homologs. Here, we combine structural, cellular, and evolutionary analyses to demonstrate that SepF is the FtsZ anchor in the human-associated archaeon Methanobrevibacter smithii. 3D super-resolution microscopy and quantitative analysis of immunolabeled cells show that SepF transiently co-localizes with FtsZ at the septum and possibly primes the future division plane. M. smithii SepF binds to membranes and to FtsZ, inducing filament bundling. High-resolution crystal structures of archaeal SepF alone and in complex with the FtsZ C-terminal domain (FtsZCTD) reveal that SepF forms a dimer with a homodimerization interface driving a binding mode that is different from that previously reported in bacteria. Phylogenetic analyses of SepF and FtsZ from bacteria and archaea indicate that the two proteins may date back to the Last Universal Common Ancestor (LUCA), and we speculate that the archaeal mode of SepF/FtsZ interaction might reflect an ancestral feature. Our results provide insights into the mechanisms of archaeal cell division and pave the way for a better understanding of the processes underlying the divide between the two prokaryotic domains.

2020 ◽  
Author(s):  
Nika Pende ◽  
Adrià Sogues ◽  
Daniela Megrian ◽  
Hayk Palabikyan ◽  
Anna Sartori-Rupp ◽  
...  

The Archaea present profound differences compared to Bacteria in fundamental molecular and cellular processes. While most Archaea divide by binary fission using an FtsZ-based system similar to Bacteria, they lack the majority of the components forming the complex bacterial divisome. Moreover, how FtsZ precisely functions and interacts with other proteins to assemble the archaeal division machinery remains largely unknown. Notably, among the multiple bacterial factors that tether FtsZ to the membrane during cell constriction, Archaea only possess SepF-like homologues, but their function has not been demonstrated. Here, we combine structural, cellular, and evolutionary approaches to demonstrate that SepF is the FtsZ anchor in the human-associated archaeon Methanobrevibacter smithii. 3D super-resolution microscopy of immunolabeled cells shows that M. smithii SepF co-localizes with FtsZ at the division plane. We also show that M. smithii SepF binds both to membranes and FtsZ, inducing filament bundling. High-resolution crystal structures of archaeal SepF alone and in complex with FtsZCTD reveal that SepF forms a dimer with a specific homodimerization interface. This drives a strikingly different binding mode from what is observed in Bacteria. Finally, analysis of the distribution and phylogeny of SepF and FtsZ indicates that these proteins date back to the Last Universal Common Ancestor (LUCA) and that Archaea may have retained features of an ancestral minimal cell division system, while Bacteria likely diverged to accommodate the emergence of the complex machinery required to coordinate cytokinesis with the rigid peptidoglycan cell wall and the appearance of additional FtsZ tethers. Our results contribute key insights into the largely understudied mechanisms of archaeal cell division, and pave the way for a better understanding of the processes underlying the divide between the two prokaryotic domains.


2021 ◽  
Vol 83 (2) ◽  
pp. 76-79
Author(s):  
Cristina Sousa

The origin of life is one of the most interesting and challenging questions in biology. This article discusses relevant contemporary theories and hypotheses about the origin of life, recent scientific evidence supporting them, and the main contributions of several scientists of different nationalities and specialties in different disciplines. Also discussed are several ideas about the characteristics of the most recent common ancestor, also called the “last universal common ancestor” (or LUCA), including cellular status (unicellular or community) and homogeneity level.


2017 ◽  
Vol 474 (14) ◽  
pp. 2277-2299 ◽  
Author(s):  
Anthony J. Michael

Since the emergence of the last common ancestor from which all extant life evolved, the metabolite repertoire of cells has increased and diversified. Not only has the metabolite cosmos expanded, but the ways in which the same metabolites are made have diversified. Enzymes catalyzing the same reaction have evolved independently from different protein folds; the same protein fold can produce enzymes recognizing different substrates, and enzymes performing different chemistries. Genes encoding useful enzymes can be transferred between organisms and even between the major domains of life. Organisms that live in metabolite-rich environments sometimes lose the pathways that produce those same metabolites. Fusion of different protein domains results in enzymes with novel properties. This review will consider the major evolutionary mechanisms that generate biosynthetic diversity: gene duplication (and gene loss), horizontal and endosymbiotic gene transfer, and gene fusion. It will also discuss mechanisms that lead to convergence as well as divergence. To illustrate these mechanisms, one of the original metabolisms present in the last universal common ancestor will be employed: polyamine metabolism, which is essential for the growth and cell proliferation of archaea and eukaryotes, and many bacteria.


Sign in / Sign up

Export Citation Format

Share Document