minimal cell
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 52)

H-INDEX

30
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Michael G. Wuo ◽  
Charles L Dulberger ◽  
Robert A. Brown ◽  
Alexander Sturm ◽  
Eveline Ultee ◽  
...  

The current understanding of mycobacterial cell envelope remodeling in response to antibiotics is limited. Chemical tools that report on phenotypic changes with minimal cell wall perturbation are critical to gaining insight into this time-dependent phenomenon. Herein we describe a fluorogenic chemical probe that reports on mycobacterial cell envelope assembly in real time. We used time-lapse microscopy to reveal distinct spatial and temporal changes in the mycobacterial membrane upon treatment with frontline antibiotics. Differential antibiotic treatment elicited unique cellular phenotypes, providing a platform for monitoring cell envelope construction and remodeling responses simultaneously. Analysis of the imaging data indicates a role for antibiotic-derived outer membrane vesicles in immune modulation.


2022 ◽  
Author(s):  
Joseph M Heili ◽  
Kaitlin Stokes ◽  
Nathaniel J Gaut ◽  
Christopher Deich ◽  
Jose Gomez-Garcia ◽  
...  

Synthetic minimal cells are a class of small liposome bioreactors that have some, but not all functions of live cells. Here, we report a critical step towards the development of a bottom-up minimal cell: cellular export of functional protein and RNA products. We used cell penetrating peptide tags to translocate payloads across a synthetic cell vesicle membrane. We demonstrated efficient transport of active enzymes, and transport of nucleic acid payloads by RNA binding proteins. We investigated influence of a concentration gradient alongside other factors on the efficiency of the translocation, and we show a method to increase product accumulation in one location. We demonstrate the use of this technology to engineer molecular communication between different populations of synthetic cells, to exchange protein and nucleic acid signals. The synthetic minimal cell production and export of proteins or nucleic acids allows experimental designs that approach the complexity and relevancy of natural biological systems.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiangna Liu ◽  
Richard Odongo Magwanga ◽  
Yanchao Xu ◽  
Tingting Wei ◽  
Joy Nyangasi Kirungu ◽  
...  

Low temperature is a common biological abiotic stress in major cotton-growing areas. Cold stress significantly affects the growth, yield, and yield quality of cotton. Therefore, it is important to develop more robust and cold stress-resilient cotton germplasms. In response to climate change and erratic weather conditions, plants have evolved various survival mechanisms, one of which involves the induction of various stress responsive transcript factors, of which the C-repeat-binding factors (CBFs) have a positive effect in enhancing plants response to cold stress. In this study, genomewide identification and functional characterization of the cotton CBFs were carried out. A total of 29, 28, 25, 21, 30, 26, and 15 proteins encoded by the CBF genes were identified in seven Gossypium species. A phylogenetic evaluation revealed seven clades, with Clades 1 and 6 being the largest. Moreover, the majority of the proteins encoded by the genes were predicted to be located within the nucleus, while some were distributed in other parts of the cell. Based on the transcriptome and RT-qPCR analysis, Gthu17439 (GthCBF4) was highly upregulated and was further validated through forward genetics. The Gthu17439 (GthCBF4) overexpressed plants exhibited significantly higher tolerance to cold stress, as evidenced by the higher germination rate, increased root growth, and high-induction levels of stress-responsive genes. Furthermore, the overexpressed plants under cold stress had significantly reduced oxidative damage due to a reduction in hydrogen peroxide (H2O2) production. Moreover, the overexpressed plants under cold stress had minimal cell damage compared to the wild types, as evidenced by the Trypan and 3,3′-Diaminobenzidine (DAB) staining effect. The results showed that the Gthu17439 (GthCBF4) could be playing a significant role in enhancing cold stress tolerance in cotton and can be further exploited in developing cotton germplasm with improved cold-stress tolerance.


2021 ◽  
Author(s):  
Manami Suzuki-Karasaki ◽  
Takashi Ando ◽  
Yushi Ochiai ◽  
Kenta Kawahara ◽  
Miki Suzuki-Karasaki ◽  
...  

Intractable cancers such as osteosarcoma (OS) and oral cancer (OC) are highly refractory, recurrent, and metastatic once developed, and their prognosis is still disappointing. Tumor-targeted therapy eliminating cancers effectively and safely is the current clinical choice. Since aggressive tumors have inherent or acquired resistance to multidisciplinary therapies targeting apoptosis, tumor-specific induction of another cell death modality is a promising avenue to meet the goal. Here, we report that a cold atmospheric air plasma-activated medium (APAM) can induce cell death in OS and OC via a unique mitochondrial clustering. This event was named monopolar perinuclear mitochondrial clustering (MPMC) because of the characteristic unipolar mitochondrial perinuclear aggregation. APAM had potent antitumor activity both in vitro and in vivo. APAM caused apoptosis, necrotic cell death, and autophagy. APAM contained hydrogen peroxide and increased mitochondrial ROS (mROS), while the antioxidant N-acetylcysteine (NAC) prevented cell death. MPMC occurred following mitochondrial fragmentation coinciding with nuclear damages. MPMC was accompanied by the tubulin network remodeling and mitochondrial lipid peroxide (mLPO) accumulation and prevented by NAC and the microtubule inhibitor, Nocodazole. Increased Cardiolipin (CL) oxidation was also seen, and NAC and the peroxy radical scavenger Ferrostatin-1 prevented it. In contrast, in fibroblasts, APAM induced minimal cell death, mROS generation, mLPO accumulation, CL oxidation, and MPMC. These results suggest that MPMC is a tumor-specific cause of cell death via mitochondrial oxidative stress and microtubule-driven mitochondrial motility. MPMC might serve as a promising target for exerting tumor-specific cytotoxicity.


Angiogenesis ◽  
2021 ◽  
Author(s):  
Timothy Klouda ◽  
Yuan Hao ◽  
Hyunbum Kim ◽  
Jiwon Kim ◽  
Judith Olejnik ◽  
...  

AbstractSevere viral pneumonia caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by a hyperinflammatory state typified by elevated circulating pro-inflammatory cytokines, frequently leading to potentially lethal vascular complications including thromboembolism, disseminated intracellular coagulopathy and vasculitis. Though endothelial infection and subsequent endothelial damage have been described in patients with fatal COVID-19, the mechanism by which this occurs remains elusive, particularly given that, under naïve conditions, pulmonary endothelial cells demonstrate minimal cell surface expression of the SARS-CoV-2 binding receptor ACE2. Herein we describe SARS-CoV-2 infection of the pulmonary endothelium in postmortem lung samples from individuals who died of COVID-19, demonstrating both heterogeneous ACE2 expression and endothelial damage. In primary endothelial cell cultures, we show that SARS-CoV-2 infection is dependent on the induction of ACE2 protein expression and that this process is facilitated by type 1 interferon-alpha (IFNα) or -beta(β)—two of the main anti-viral cytokines induced in severe SARS-CoV-2 infection—but not significantly by other cytokines (including interleukin 6 and interferon γ/λ). Our findings suggest that the stereotypical anti-viral interferon response may paradoxically facilitate the propagation of COVID-19 from the respiratory epithelium to the vasculature, raising concerns regarding the use of exogenous IFNα/β in the treatment of patients with COVID-19.


2021 ◽  
Author(s):  
Alicia Broto ◽  
Erika Gaspari ◽  
Samuel Miravet-Verde ◽  
Vitor Martins dos Santos ◽  
Mark Isalan

Abstract Mycoplasmas have exceptionally streamlined genomes and are strongly adapted to their many hosts, which provide them with essential nutrients. Owing to their relative genomic simplicity, Mycoplasmas have been used for the development of chassis to deploy tailored vaccines. However, the dearth of robust and precise toolkits for genomic manipulation and tight regulation has hindered any substantial advance. Herein we describe the construction of a robust genetic toolkit for M. pneumoniae, and its successful deployment to engineer synthetic gene switches that control and limit Mycoplasma growth, for biosafety containment applications. We found these synthetic gene circuits to be stable and robust in the long-term, in the context of a minimal cell. With this work, we lay a foundation to develop viable and robust biosafety systems to exploit a synthetic Mycoplasma chassis for live attenuated vaccines or even for live vectors for biotherapeutics.


2021 ◽  
Vol 134 (19) ◽  
Author(s):  
Tong San Tan ◽  
John E. A. Common ◽  
John S. Y. Lim ◽  
Cedric Badowski ◽  
Muhammad Jasrie Firdaus ◽  
...  

ABSTRACT In the skin fragility disorder epidermolysis bullosa simplex (EBS), mutations in keratin 14 (K14, also known as KRT14) or keratin 5 (K5, also known as KRT5) lead to keratinocyte rupture and skin blistering. Severe forms of EBS are associated with cytoplasmic protein aggregates, with elevated kinase activation of ERK1 and ERK2 (ERK1/2; also known as MAPK3 and MAPK1, respectively), suggesting intrinsic stress caused by misfolded keratin protein. Human keratinocyte EBS reporter cells stably expressing GFP-tagged EBS-mimetic mutant K14 were used to optimize a semi-automated system to quantify the effects of test compounds on keratin aggregates. Screening of a protein kinase inhibitor library identified several candidates that reduced aggregates and impacted on epidermal growth factor receptor (EGFR) signalling. EGF ligand exposure induced keratin aggregates in EBS reporter keratinocytes, which was reversible by EGFR inhibition. EBS keratinocytes treated with a known EGFR inhibitor, afatinib, were driven out of activation and towards quiescence with minimal cell death. Aggregate reduction was accompanied by denser keratin filament networks with enhanced intercellular cohesion and resilience, which when extrapolated to a whole tissue context would predict reduced epidermal fragility in EBS patients. This assay system provides a powerful tool for discovery and development of new pathway intervention therapeutic avenues for EBS.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2192
Author(s):  
Abraham Guzmán-Palomino ◽  
Luciano Aguilera-Vázquez ◽  
Héctor Hernández-Escoto ◽  
Pedro Martin García-Vite

Microalgae-based biomass has been extensively studied because of its potential to produce several important biochemicals, such as lipids, proteins, carbohydrates, and pigments, for the manufacturing of value-added products, such as vitamins, bioactive compounds, and antioxidants, as well as for its applications in carbon dioxide sequestration, amongst others. There is also increasing interest in microalgae as renewable feedstock for biofuel production, inspiring a new focus on future biorefineries. This paper is dedicated to an in-depth analysis of the equilibria, stability, and sensitivity of a microalgal growth model developed by Droop (1974) for nutrient-limited batch cultivation. Two equilibrium points were found: the long-term biomass production equilibrium was found to be stable, whereas the equilibrium in the absence of biomass was found to be unstable. Simulations of estimated parameters and initial conditions using literature data were performed to relate the found results to a physical context. In conclusion, an examination of the found equilibria showed that the system does not have isolated fixed points but rather has an infinite number of equilibria, depending on the values of the minimal cell quota and initial conditions of the state variables of the model. The numerical solutions of the sensitivity functions indicate that the model outputs were more sensitive, in particular, to variations in the parameters of the half saturation constant and minimal cell quota than to variations in the maximum inorganic nutrient absorption rate and maximum growth rate.


2021 ◽  
Author(s):  
Albert Gonzalez ◽  
Robert Lee ◽  
Larry Booshehri ◽  
David Grady ◽  
Victoria Vaddi ◽  
...  

Vaginal dryness is a common condition that is particularly prevalent during and after the menopause and it is one of the most important symptoms associated with vulvovaginal atrophy/genitourinary syndrome of menopause. The impact of vaginal dryness on interpersonal relationships, quality of life, daily activities, and sexual function can be significant, but is frequently underreported and undertreated. Personal lubricants and moisturizers are effective at relieving discomfort and pain during sexual intercourse for women with mild to moderate vaginal dryness, particularly those who have a genuine contraindication to estrogen, or who choose not to use estrogen. We evaluated the safety and beneficial effects of a new type of estrogen-free vaginal gel, Feminilove BIO-FRESH moisturizing vaginal gel, using in vitro and in vivo experimental tools. Our results suggest that; 1) Feminilove vaginal gel exhibits minimal cell cytotoxicity on various human vaginal cells; 2) Feminilove vaginal gel exhibits minimal side-effects on the structure of vaginal mucosa stratum of experimental animals; 3) Feminiove vaginal gel inhibits the growth of pathogenic vaginal bacteria (E. coli) while promotes the growth of beneficial vaginal bacteria (Lactobacillus spp); 4) Feminilove vaginal gel elicits an anti-inflammatory response on vaginal epithelial cells; and 5) Feminilove vaginal gel promotes the production of tropoelastin and collagen on cultural vaginal smooth muscle and may restore loose vaginal wall (i.e., tightening effects). In summary, our results indicate that Feminilove BIO-FRESH moisturizing vaginal gel is a safe and effective remedy for the treatment of symptoms associated with vaginal dryness and vulvovaginal atrophy in women. Keyword: vaginal dryness, vulvovaginal atrophy, genitourinary syndrome of menopause, sexual dysfunction, vaginal lubrication, vaginal moisturizer


2021 ◽  
Vol 8 ◽  
Author(s):  
Benjamin R. Gilbert ◽  
Zane R. Thornburg ◽  
Vinson Lam ◽  
Fatema-Zahra M. Rashid ◽  
John I. Glass ◽  
...  

JCVI-syn3A is a genetically minimal bacterial cell, consisting of 493 genes and only a single 543 kbp circular chromosome. Syn3A’s genome and physical size are approximately one-tenth those of the model bacterial organism Escherichia coli’s, and the corresponding reduction in complexity and scale provides a unique opportunity for whole-cell modeling. Previous work established genome-scale gene essentiality and proteomics data along with its essential metabolic network and a kinetic model of genetic information processing. In addition to that information, whole-cell, spatially-resolved kinetic models require cellular architecture, including spatial distributions of ribosomes and the circular chromosome’s configuration. We reconstruct cellular architectures of Syn3A cells at the single-cell level directly from cryo-electron tomograms, including the ribosome distributions. We present a method of generating self-avoiding circular chromosome configurations in a lattice model with a resolution of 11.8 bp per monomer on a 4 nm cubic lattice. Realizations of the chromosome configurations are constrained by the ribosomes and geometry reconstructed from the tomograms and include DNA loops suggested by experimental chromosome conformation capture (3C) maps. Using ensembles of simulated chromosome configurations we predict chromosome contact maps for Syn3A cells at resolutions of 250 bp and greater and compare them to the experimental maps. Additionally, the spatial distributions of ribosomes and the DNA-crowding resulting from the individual chromosome configurations can be used to identify macromolecular structures formed from ribosomes and DNA, such as polysomes and expressomes.


Sign in / Sign up

Export Citation Format

Share Document