endosymbiotic gene transfer
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 10)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Shigekatsu Suzuki ◽  
Masanobu Kawachi ◽  
Chinatsu Tsukakoshi ◽  
Atsushi Nakamura ◽  
Kyoko Hagino ◽  
...  

Marine phytoplankton are major primary producers, and their growth is primarily limited by nitrogen in the oligotrophic ocean environment. The haptophyte Braarudosphaera bigelowii possesses a cyanobacterial endosymbiont (UCYN-A), which plays a major role in nitrogen fixation in the ocean. However, host-symbiont interactions are poorly understood because B. bigelowii was unculturable. In this study, we sequenced the complete genome of the B. bigelowii endosymbiont and showed that it was highly reductive and closely related to UCYN-A2 (an ecotype of UCYN-A). We succeeded in establishing B. bigelowii strains and performed microscopic observations. The detailed observations showed that the cyanobacterial endosymbiont was surrounded by a single host derived membrane and divided synchronously with the host cell division. The transcriptome of B. bigelowii revealed that B. bigelowii lacked the expression of many essential genes associated with the uptake of most nitrogen compounds, except ammonia. During cultivation, some of the strains completely lost the endosymbiont. Moreover, we did not find any evidence of endosymbiotic gene transfer from the endosymbiont to the host. These findings illustrate an unstable morphological, metabolic, and genetic relationship between B. bigelowii and its endosymbiont.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Steven Kelly

Abstract Background The endosymbiosis of the bacterial progenitors of the mitochondrion and the chloroplast are landmark events in the evolution of life on Earth. While both organelles have retained substantial proteomic and biochemical complexity, this complexity is not reflected in the content of their genomes. Instead, the organellar genomes encode fewer than 5% of the genes found in living relatives of their ancestors. While many of the 95% of missing organellar genes have been discarded, others have been transferred to the host nuclear genome through a process known as endosymbiotic gene transfer. Results Here, we demonstrate that the difference in the per-cell copy number of the organellar and nuclear genomes presents an energetic incentive to the cell to either delete organellar genes or transfer them to the nuclear genome. We show that, for the majority of transferred organellar genes, the energy saved by nuclear transfer exceeds the costs incurred from importing the encoded protein into the organelle where it can provide its function. Finally, we show that the net energy saved by endosymbiotic gene transfer can constitute an appreciable proportion of total cellular energy budgets and is therefore sufficient to impart a selectable advantage to the cell. Conclusion Thus, reduced cellular cost and improved energy efficiency likely played a role in the reductive evolution of mitochondrial and chloroplast genomes and the transfer of organellar genes to the nuclear genome.


2021 ◽  
Author(s):  
Jorge Morales ◽  
Georg Ehret ◽  
Gereon Poschmann ◽  
Tobias Reinicke ◽  
Lena Kroeninger ◽  
...  

The transformation of endosymbiotic bacteria into genetically integrated organelles was central to eukaryote evolution. During organellogenesis, control over endosymbiont division, proteome composition, and physiology largely shifted from the endosymbiont to the host cell nucleus. However, to understand the order and timing of events underpinning organellogenesis novel model systems are required. The trypanosomatid Angomonas deanei contains β-proteobacterial endosymbiont that divides synchronously with the host, contributes essential metabolites to host cell metabolism, and transferred one bacterial gene [encoding an ornithine cyclodeaminase (OCD)] to the nucleus. However, the molecular mechanisms mediating the intricate host/symbiont interactions are largely unexplored. Here we identified seven nucleus-encoded proteins by protein mass spectrometry that are targeted to the endosymbiont. Expression of fluorescent fusion proteins revealed recruitment of these proteins to specific sites within the endosymbiont including its cytoplasm and a ring-shaped structure surrounding its division site. This structure remarkably resembles in shape and predicted functions mitochondrial and plastid division machineries. The endosymbiotic gene transfer-derived OCD localizes to glycosomes instead of being retargeted to the endosymbiont. Hence, scrutiny of protein re-localization patterns that are induced by endosymbiosis, yielded profound insights into how an endosymbiotic relationship can stabilize and deepen over time far beyond the level of metabolite exchange.


Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 386
Author(s):  
Miroslav Oborník

In most eukaryotic phototrophs, the entire heme synthesis is localized to the plastid, and enzymes of cyanobacterial origin dominate the pathway. Despite that, porphobilinogen deaminase (PBGD), the enzyme responsible for the synthesis of hydroxymethybilane in the plastid, shows phylogenetic affiliation to α-proteobacteria, the supposed ancestor of mitochondria. Surprisingly, no PBGD of such origin is found in the heme pathway of the supposed partners of the primary plastid endosymbiosis, a primarily heterotrophic eukaryote, and a cyanobacterium. It appears that α-proteobacterial PBGD is absent from glaucophytes but is present in rhodophytes, chlorophytes, plants, and most algae with complex plastids. This may suggest that in eukaryotic phototrophs, except for glaucophytes, either the gene from the mitochondrial ancestor was retained while the cyanobacterial and eukaryotic pseudoparalogs were lost in evolution, or the gene was acquired by non-endosymbiotic gene transfer from an unspecified α-proteobacterium and functionally replaced its cyanobacterial and eukaryotic counterparts.


Author(s):  
Hisayuki Kudo ◽  
Mitsuhiro Matsuo ◽  
Soichirou Satoh ◽  
Rei Hachisu ◽  
Masayuki Nakamura ◽  
...  

ABSTRACTIn gene-trap screening of plant genomes, promoterless reporter constructs are often expressed without trapping of annotated gene promoters. The molecular basis of this phenomenon, which has been interpreted as the trapping of cryptic promoters, is poorly understood. In this study, using Arabidopsis gene-trap lines in which a firefly luciferase (LUC) open reading frame (ORF) was expressed from intergenic regions, we found that cryptic promoter activation occurs by at least two different mechanisms: one is the capturing of pre-existing promoter-like chromatin marked by H3K4me3 and H2A.Z, and the other is the entirely new formation of promoter chromatin near the 5’ end of the inserted LUC ORF. To discriminate between these, we denoted the former mechanism as “cryptic promoter capturing”, and the latter one as “promoter de novo origination”. The latter finding raises a question as to how inserted LUC ORF sequence is involved in this phenomenon. To examine this, we performed a model experiment with chimeric LUC genes in transgenic plants. Using Arabidopsis psaH1 promoter–LUC constructs, we found that the functional core promoter region, where transcription start sites (TSS) occur, cannot simply be determined by the upstream nor core promoter sequences; rather, its positioning proximal to the inserted LUC ORF sequence was more critical. This result suggests that the insertion of the LUC ORF sequence alters the local distribution of the TSS in the plant genome. The possible impact of the two types of cryptic promoter activation mechanisms on plant genome evolution and endosymbiotic gene transfer is discussed.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1524
Author(s):  
Amna Komal Khan ◽  
Humera Kausar ◽  
Syyada Samra Jaferi ◽  
Samantha Drouet ◽  
Christophe Hano ◽  
...  

With the increase in biotechnological, environmental, and nutraceutical importance of algae, about 100 whole genomic sequences of algae have been published, and this figure is expected to double in the coming years. The phenotypic and ecological diversity among algae hints at the range of functional capabilities encoded by algal genomes. In order to explore the biodiversity of algae and fully exploit their commercial potential, understanding their evolutionary, structural, functional, and developmental aspects at genomic level is a pre-requisite. So forth, the algal genomic analysis revealed us that algae evolved through endosymbiotic gene transfer, giving rise to around eight phyla. Amongst the diverse algal species, the unicellular green algae Chlamydomonas reinhardtii has attained the status of model organism as it is an ideal organism to elucidate the biological processes critical to plants and animals, as well as commercialized to produce range of bio-products. For this review, an overview of evolutionary process of algae through endosymbiosis in the light of genomics, as well as the phylogenomic, studies supporting the evolutionary process of algae was reviewed. Algal genomics not only helped us to understand the evolutionary history of algae but also may have an impact on our future by helping to create algae-based products and future biotechnological approaches.


Author(s):  
Steven Kelly

AbstractThe endosymbiosis of the bacterial progenitors of mitochondrion and the chloroplast are landmark events in the evolution of life on earth. While both organelles have retained substantial proteomic and biochemical complexity, this complexity is not reflected in the content of their genomes. Instead, the organellar genomes encode fewer than 5% of genes found in living relatives of their ancestors. While some of the 95% of missing organellar genes have been discarded, many have been transferred to the host nuclear genome through a process known as endosymbiotic gene transfer. Here we demonstrate that the energy liberated or consumed by a cell as a result of endosymbiotic gene transfer can be sufficient to provide a selectable advantage for retention or nuclear-transfer of organellar genes in eukaryotic cells. We further demonstrate that for realistic estimates of protein abundances, organellar protein import costs, host cell sizes, and cellular investment in organelles that it is energetically favourable to transfer the majority of organellar genes to the nuclear genome. Moreover, we show that the selective advantage of such transfers is sufficiently large to enable such events to rapidly reach fixation. Thus, endosymbiotic gene transfer can be advantageous in the absence of any additional benefit to the host cell, providing new insight into the processes that have shaped eukaryotic genome evolution.One sentence summaryThe high copy number of organellar genomes renders endosymbiotic gene transfer energetically favourable for the vast majority of organellar genes.


2019 ◽  
Vol 133 (1) ◽  
pp. 15-33 ◽  
Author(s):  
Naoki Sato

AbstractThe paradigm “cyanobacterial origin of chloroplasts” is currently viewed as an established fact. However, we may have to re-consider the origin of chloroplast membranes, because membranes are not replicated by their own. It is the genes for lipid biosynthetic enzymes that are inherited. In the current understandings, these enzymes became encoded by the nuclear genome as a result of endosymbiotic gene transfer from the endosymbiont. However, we previously showed that many enzymes involved in the synthesis of chloroplast peptidoglycan and glycolipids did not originate from cyanobacteria. Here I present results of comprehensive phylogenetic analysis of chloroplast enzymes involved in fatty acid and lipid biosynthesis, as well as additional chloroplast components related to photosynthesis and gene expression. Four types of phylogenetic relationship between chloroplast enzymes (encoded by the chloroplast and nuclear genomes) and cyanobacterial counterparts were found: type 1, chloroplast enzymes diverged from inside of cyanobacterial clade; type 2, chloroplast and cyanobacterial enzymes are sister groups; type 3, chloroplast enzymes originated from homologs of bacteria other than cyanobacteria; type 4, chloroplast enzymes diverged from eukaryotic homologs. Estimation of evolutionary distances suggested that the acquisition times of chloroplast enzymes were diverse, indicating that multiple gene transfers accounted for the chloroplast enzymes analyzed. Based on the results, I try to relax the tight logic of the endosymbiotic origin of chloroplasts involving a single endosymbiotic event by proposing alternative hypotheses. The hypothesis of host-directed chloroplast formation proposes that glycolipid synthesis ability had been acquired by the eukaryotic host before the acquisition of chloroplast ribosomes. Chloroplast membrane system could have been provided by the host, whereas cyanobacteria contributed to the genes for the genetic and photosynthesis systems, at various times, either before or after the formation of chloroplast membranes. The origin(s) of chloroplasts seems to be more complicated than the single event of primary endosymbiosis.


Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 582 ◽  
Author(s):  
Sharaf ◽  
Gruber ◽  
Jiroutová ◽  
Oborník

Aminoacyl-tRNA synthetases (AaRSs) are enzymes that catalyze the ligation of tRNAs to amino acids. There are AaRSs specific for each amino acid in the cell. Each cellular compartment in which translation takes place (the cytosol, mitochondria, and plastids in most cases), needs the full set of AaRSs; however, individual AaRSs can function in multiple compartments due to dual (or even multiple) targeting of nuclear-encoded proteins to various destinations in the cell. We searched the genomes of the chromerids, Chromera velia and Vitrella brassicaformis, for AaRS genes: 48 genes encoding AaRSs were identified in C. velia, while only 39 AaRS genes were found in V. brassicaformis. In the latter alga, ArgRS and GluRS were each encoded by a single gene occurring in a single copy; only PheRS was found in three genes, while the remaining AaRSs were encoded by two genes. In contrast, there were nine cases for which C. velia contained three genes of a given AaRS (45% of the AaRSs), all of them representing duplicated genes, except AsnRS and PheRS, which are more likely pseudoparalogs (acquired via horizontal or endosymbiotic gene transfer). Targeting predictions indicated that AaRSs are not (or not exclusively), in most cases, used in the cellular compartment from which their gene originates. The molecular phylogenies of the AaRSs are variable between the specific types, and similar between the two investigated chromerids. While genes with eukaryotic origin are more frequently retained, there is no clear pattern of orthologous pairs between C. velia and V. brassicaformis.


2019 ◽  
Vol 224 (2) ◽  
pp. 618-624 ◽  
Author(s):  
Rafael I. Ponce‐Toledo ◽  
Purificación López‐García ◽  
David Moreira

Sign in / Sign up

Export Citation Format

Share Document