scholarly journals Gut microbiota mediate the FGF21 adaptive stress response to chronic dietary protein-restriction in mice

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anthony Martin ◽  
Gertrude Ecklu-Mensah ◽  
Connie W. Y. Ha ◽  
Gustaf Hendrick ◽  
Donald K. Layman ◽  
...  

AbstractChronic dietary protein-restriction can create essential amino acid deficiencies and induce metabolic adaptation through the hepatic FGF21 pathway which serves to maintain host fitness during prolonged states of nutritional imbalance. Similarly, the gut microbiome undergoes metabolic adaptations when dietary nutrients are added or withdrawn. Here we confirm previous reports that dietary protein-restriction triggers the hepatic FGF21 adaptive metabolic pathway and further demonstrate that this response is mediated by the gut microbiome and can be tuned through dietary supplementation of fibers that alter the gut microbiome. In the absence of a gut microbiome, we discover that FGF21 is de-sensitized to the effect of protein-restriction. These data suggest that host-intrinsic adaptive pathways to chronic dietary protein-restriction, such as the hepatic FGF21 pathway, may in-fact be responding first to adaptive metabolic changes in the gut microbiome.

2016 ◽  
Vol 11 (S 01) ◽  
Author(s):  
T Laeger ◽  
DC Albarado ◽  
L Trosclair ◽  
J Hedgepeth ◽  
CD Morrison

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 261-LB
Author(s):  
CRISTAL M. HILL ◽  
MADELEINE V. DEHNER ◽  
DAVID MCDOUGAL ◽  
HANS-RUDOLF BERTHOUD ◽  
HEIKE MUENZBERG ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 238-LB
Author(s):  
CHRISTOPHER L. AXELROD ◽  
WAGNER S. DANTAS ◽  
GANGARAO DAVULURI ◽  
WILLIAM T. KING ◽  
CRISTAL M. HILL ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2609
Author(s):  
Han Fang ◽  
Kirsten P. Stone ◽  
Sujoy Ghosh ◽  
Laura A. Forney ◽  
Thomas W. Gettys

Dietary protein restriction and dietary methionine restriction (MR) produce a comparable series of behavioral, physiological, biochemical, and transcriptional responses. Both dietary regimens produce a similar reduction in intake of sulfur amino acids (e.g., methionine and cystine), and both diets increase expression and release of hepatic FGF21. Given that FGF21 is an essential mediator of the metabolic phenotype produced by both diets, an important unresolved question is whether dietary protein restriction represents de facto methionine restriction. Using diets formulated from either casein or soy protein with matched reductions in sulfur amino acids, we compared the ability of the respective diets to recapitulate the metabolic phenotype produced by methionine restriction using elemental diets. Although the soy-based control diets supported faster growth compared to casein-based control diets, casein-based protein restriction and soy-based protein restriction produced comparable reductions in body weight and fat deposition, and similar increases in energy intake, energy expenditure, and water intake. In addition, the prototypical effects of dietary MR on hepatic and adipose tissue target genes were similarly regulated by casein- and soy-based protein restriction. The present findings support the feasibility of using restricted intake of diets from various protein sources to produce therapeutically effective implementation of dietary methionine restriction.


Oncotarget ◽  
2013 ◽  
Vol 4 (12) ◽  
pp. 2451-2461 ◽  
Author(s):  
Luigi Fontana ◽  
Remi M. Adelaiye ◽  
Antonella L. Rastelli ◽  
Kiersten Marie Miles ◽  
Eric Ciamporcero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document