scholarly journals Colonization of dermal arterioles by Neisseria meningitidis provides a safe haven from neutrophils

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Valeria Manriquez ◽  
Pierre Nivoit ◽  
Tomas Urbina ◽  
Hebert Echenique-Rivera ◽  
Keira Melican ◽  
...  

AbstractThe human pathogen Neisseria meningitidis can cause meningitis and fatal systemic disease. The bacteria colonize blood vessels and rapidly cause vascular damage, despite a neutrophil-rich inflammatory infiltrate. Here, we use a humanized mouse model to show that vascular colonization leads to the recruitment of neutrophils, which partially reduce bacterial burden and vascular damage. This partial effect is due to the ability of bacteria to colonize capillaries, venules and arterioles, as observed in human samples. In venules, potent neutrophil recruitment allows efficient bacterial phagocytosis. In contrast, in infected capillaries and arterioles, adhesion molecules such as E-Selectin are not expressed on the endothelium, and intravascular neutrophil recruitment is minimal. Our results indicate that the colonization of capillaries and arterioles by N. meningitidis creates an intravascular niche that precludes the action of neutrophils, resulting in immune escape and progression of the infection.

2021 ◽  
Author(s):  
Valeria Manriquez ◽  
Pierre Nivoit ◽  
Tomas Urbina ◽  
Hebert Echenique-Rivera ◽  
Keira Melican ◽  
...  

Neisseria meningitidis, a human-specific bacterium, is responsible for meningitis and fatal fulminant systemic disease. Bacteria colonize blood vessels, rapidly causing devastating vascular damage despite a neutrophil-rich inflammatory infiltrate. How this pathogen escapes the neutrophil response is unknown. Using a humanized mouse model, we show that vascular colonization leads to the recruitment of neutrophils, partially reducing bacterial burden and vascular damage. This partial effect is due to the ability of bacteria to indiscriminately colonize capillaries, venules and arterioles, as observed in human samples. In venules, potent neutrophil recruitment allows efficient bacterial phagocytosis. In contrast, in infected capillaries and arterioles adhesion molecules such as E-Selectin are not expressed on the endothelium and intravascular neutrophil recruitment is minimal. These results show that colonization of capillaries and arterioles by N. meningitidis create an intravascular niche that preclude the action of neutrophils, resulting in immune escape and subsequent fulminant progression of the infection.


2013 ◽  
Vol 9 (1) ◽  
pp. e1003139 ◽  
Author(s):  
Keira Melican ◽  
Paula Michea Veloso ◽  
Tiffany Martin ◽  
Patrick Bruneval ◽  
Guillaume Duménil

2020 ◽  
Vol 8 (2) ◽  
pp. e001513
Author(s):  
Nahee Park ◽  
Kamal Pandey ◽  
Sei Kyung Chang ◽  
Ah-Young Kwon ◽  
Young Bin Cho ◽  
...  

BackgroundWell-characterized preclinical models are essential for immune-oncology research. We investigated the feasibility of our humanized mouse model for evaluating the long-term efficacy of immunotherapy and biomarkers.MethodsHumanized mice were generated by injecting human fetal cord blood-derived CD34+ hematopoietic stem cells to NOD-scid IL2rγnull (NSG) mice myeloablated with irradiation or busulfan. The humanization success was defined as a 25% or higher ratio of human CD45+ cells to mice peripheral blood mononuclear cells.ResultsBusulfan was ultimately selected as the appropriate myeloablative method because it provided a higher success rate of humanization (approximately 80%) and longer survival time (45 weeks). We proved the development of functional T cells by demonstrating the anticancer effect of the programmed cell death-1 (PD-1) inhibitor in our humanized mice but not in non-humanized NSG mice. After confirming the long-lasting humanization state (45 weeks), we further investigated the response durability of the PD-1 inhibitor and biomarkers in our humanized mice. Early increase in serum tumor necrosis factor α levels, late increase in serum interleukin 6 levels and increase in tumor-infiltrating CD8+ T lymphocytes correlated more with a durable response over 60 days than with a non-durable response.ConclusionsOur CD34+ humanized mouse model is the first in vivo platform for testing the long-term efficacy of anticancer immunotherapies and biomarkers, given that none of the preclinical models has ever been evaluated for such a long duration.


2015 ◽  
Vol 39 (6) ◽  
pp. 649-656 ◽  
Author(s):  
Kristina M. DiFranco ◽  
Nadine Johnson-Farley ◽  
Joseph R. Bertino ◽  
David Elson ◽  
Brian A. Vega ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document