scholarly journals Colonization of dermal arterioles by Neisseria meningitidis provides a safe haven from neutrophils

2021 ◽  
Author(s):  
Valeria Manriquez ◽  
Pierre Nivoit ◽  
Tomas Urbina ◽  
Hebert Echenique-Rivera ◽  
Keira Melican ◽  
...  

Neisseria meningitidis, a human-specific bacterium, is responsible for meningitis and fatal fulminant systemic disease. Bacteria colonize blood vessels, rapidly causing devastating vascular damage despite a neutrophil-rich inflammatory infiltrate. How this pathogen escapes the neutrophil response is unknown. Using a humanized mouse model, we show that vascular colonization leads to the recruitment of neutrophils, partially reducing bacterial burden and vascular damage. This partial effect is due to the ability of bacteria to indiscriminately colonize capillaries, venules and arterioles, as observed in human samples. In venules, potent neutrophil recruitment allows efficient bacterial phagocytosis. In contrast, in infected capillaries and arterioles adhesion molecules such as E-Selectin are not expressed on the endothelium and intravascular neutrophil recruitment is minimal. These results show that colonization of capillaries and arterioles by N. meningitidis create an intravascular niche that preclude the action of neutrophils, resulting in immune escape and subsequent fulminant progression of the infection.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Valeria Manriquez ◽  
Pierre Nivoit ◽  
Tomas Urbina ◽  
Hebert Echenique-Rivera ◽  
Keira Melican ◽  
...  

AbstractThe human pathogen Neisseria meningitidis can cause meningitis and fatal systemic disease. The bacteria colonize blood vessels and rapidly cause vascular damage, despite a neutrophil-rich inflammatory infiltrate. Here, we use a humanized mouse model to show that vascular colonization leads to the recruitment of neutrophils, which partially reduce bacterial burden and vascular damage. This partial effect is due to the ability of bacteria to colonize capillaries, venules and arterioles, as observed in human samples. In venules, potent neutrophil recruitment allows efficient bacterial phagocytosis. In contrast, in infected capillaries and arterioles, adhesion molecules such as E-Selectin are not expressed on the endothelium, and intravascular neutrophil recruitment is minimal. Our results indicate that the colonization of capillaries and arterioles by N. meningitidis creates an intravascular niche that precludes the action of neutrophils, resulting in immune escape and progression of the infection.


2013 ◽  
Vol 9 (1) ◽  
pp. e1003139 ◽  
Author(s):  
Keira Melican ◽  
Paula Michea Veloso ◽  
Tiffany Martin ◽  
Patrick Bruneval ◽  
Guillaume Duménil

2021 ◽  
Author(s):  
Wei Zhou ◽  
Kin-hoe Chow ◽  
Rory Geyer ◽  
Paola Peshkepija ◽  
Elizabeth Fleming ◽  
...  

Human gut microbiota has co-evolved with human, and plays important roles in regulating the development and functioning of the host immune system. To study the human-specific microbiome-immunune interaction in an animal model is challenging as the animal model needs to capture both the human-specific immune functions and the human-specific microbiome composition. Here we combined two widely-used humanization procedures to generate a humanized mouse model (HMA-huCD34) with functional human leukocytes developed from engrafted huCD34+ cells and human fecal microbes introduced through fecal microbiota transplantation, and investigated how the two introduced human components interact. We found that the engrafted human leukocytes are resilient to the transplanted human microbes, while reciprocally the transplanted microbial community in the huCD34 mice was significantly different from mice without a humanized immune system. By tracking the colonization of human fecal Bacteroides strains in the mouse gut, we found that the composition of the strain population changes over time, the trajectory of which depends upon the type of mouse. On the other hand, different from Bacteroides, Akkermansia muciniphila exhibited consistent and rapid fixation of a single donor strain in all tested mice, suggesting strong purifying selection common to all mouse types. Our prospect study illustrated the complex interactions between the transplanted microbiome and different host factors, and suggested that the humanized mouse model may not faithfully reproduce the human-specific microbiome-immune interaction.


2021 ◽  
Vol 17 (4) ◽  
pp. e1009186
Author(s):  
Kathryn Wright ◽  
Kumudika de Silva ◽  
Karren M. Plain ◽  
Auriol C. Purdie ◽  
Tamika A. Blair ◽  
...  

Pathogenic mycobacteria actively dysregulate protective host immune signalling pathways during infection to drive the formation of permissive granuloma microenvironments. Dynamic regulation of host microRNA (miRNA) expression is a conserved feature of mycobacterial infections across host-pathogen pairings. Here we examine the role of miR-206 in the zebrafish model of Mycobacterium marinum infection, which allows investigation of the early stages of granuloma formation. We find miR-206 is upregulated following infection by pathogenic M. marinum and that antagomir-mediated knockdown of miR-206 is protective against infection. We observed striking upregulation of cxcl12a and cxcr4b in infected miR-206 knockdown zebrafish embryos and live imaging revealed enhanced recruitment of neutrophils to sites of infection. We used CRISPR/Cas9-mediated knockdown of cxcl12a and cxcr4b expression and AMD3100 inhibition of Cxcr4 to show that the enhanced neutrophil response and reduced bacterial burden caused by miR-206 knockdown was dependent on the Cxcl12/Cxcr4 signalling axis. Together, our data illustrate a pathway through which pathogenic mycobacteria induce host miR-206 expression to suppress Cxcl12/Cxcr4 signalling and prevent protective neutrophil recruitment to granulomas.


Sign in / Sign up

Export Citation Format

Share Document