lens crystallins
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 12)

H-INDEX

40
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sunita Patel ◽  
Ramakrishna V. Hosur

AbstractCrystallins are ubiquitous, however, prevalence is seen in eye lens. Eye lens crystallins are long-lived and structural intactness is required for maintaining lens transparency and protein solubility. Mutations in crystallins often lead to cataract. In this study, we performed mutations at specific sites of M-crystallin, a close homologue of eye lens crystallin and studied by using replica exchange molecular dynamics simulation with generalized Born implicit solvent model. Mutations were made on the Ca2+ binding residues (K34D and S77D) and in the hydrophobic core (W45R) which is known to cause congenital cataract in homologous γD-crystallin. The chosen mutations caused large motion of the N-terminal Greek key, concomitantly broke the interlocking Greek keys interactions and perturbed the compact core resulting in several folded and partially unfolded states. Partially unfolded states exposed large hydrophobic patches that could act as precursors for self-aggregation. Accumulation of such aggregates is the potential cause of cataract in homologous eye lens crystallins.


2021 ◽  
pp. 108707
Author(s):  
Eugene Serebryany ◽  
David C. Thorn ◽  
Liliana Quintanar

2021 ◽  
Author(s):  
Sunita Patel ◽  
Ramakrishna V. Hosur

Abstract Crystallins are ubiquitous, however, prevalence is seen in eye lens. Eye lens crystallins are long-lived and structural intactness is required for maintaining lens transparency and protein solubility. Mutations in crystallin often lead to cataract. In this study, we performed mutations at specific sites of M-crystallin, a close homologue of eye lens crystallin and studied by employing replica exchange molecular dynamics with generalized Born solvation model. Mutations were made on the Ca2+ binding residues (K34D and S77D) and in the hydrophobic core (W45R) which is known to cause congenital cataract in homologous γD-crystallin. The chosen mutations caused large motion of the N-terminal Greek key, concomitantly break the interlocking Greek keys interactions and perturbed the compact core resulting in several folded and partially unfolded states. Partially unfolded states expose large hydrophobic patches that can act as precursors for self-aggregation. Accumulation of such aggregates is the potential cause of cataract in homologous crystallins.


2020 ◽  
Author(s):  
Eugene Serebryany ◽  
Sourav Chowdhury ◽  
Christopher N. Woods ◽  
David C. Thorn ◽  
Nicki E Watson ◽  
...  

Cataract is one of the most prevalent protein aggregation disorders and still the most common cause of vision loss worldwide. The metabolically quiescent core region of the human lens lacks cellular or protein turnover; it has therefore evolved remarkable mechanisms to resist light-scattering protein aggregation for a lifetime. We now report that one such mechanism involves an unusually abundant lens metabolite, myo-inositol, suppressing aggregation of lens crystallins. We quantified aggregation suppression using our previously well-characterized in vitro aggregation assays of oxidation-mimicking human γD-crystallin variants and investigated myo-inositol's molecular mechanism of action using solution NMR, negative-stain TEM, differential scanning fluorometry, thermal scanning Raman spectroscopy, turbidimetry in redox buffers, and free thiol quantitation. Unlike many known chemical chaperones, myo-inositol's primary target was neither the native nor the unfolded state of the protein, nor the final aggregated state, but rather the rate-limiting bimolecular step on the aggregation pathway. Given recent metabolomic evidence that it is severely depleted in human cataractous lenses compared to age-matched controls, we suggest that maintaining or restoring healthy levels of myo-inositol in the lens may be a simple, safe, and globally accessible strategy to prevent or delay lens opacification due to age-onset cataract.


2020 ◽  
Vol 21 (15) ◽  
pp. 5427
Author(s):  
Carlo Mischiati ◽  
Giordana Feriotto ◽  
Claudio Tabolacci ◽  
Fabio Domenici ◽  
Sonia Melino ◽  
...  

In an in vitro Ca2+-induced cataract model, the progression of opacification is paralleled by a rapid decrease of the endogenous levels of spermidine (SPD) and an increase of transglutaminase type 2 (TG2, EC 2.3.2.13)-catalyzed lens crystallins cross-linking by protein-bound N1-N8-bis(γ-glutamyl) SPD. This pattern was reversed adding exogenous SPD to the incubation resulting in a delayed loss of transparency of the rabbit lens. The present report shows evidence on the main incorporation of SPD by the catalytic activity of TG2, toward βH-crystallins and in particular to the βB2- and mostly in βB3-crystallins. The increase of endogenous SPD in the cultured rabbit lens showed the activation of a flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAO EC 1.5.3.11). As it is known that FAD-PAO degrades the N8-terminal reactive portion of N1-mono(γ-glutamyl) SPD, the protein-bound N8-mono(γ-glutamyl) SPD was found the mainly available derivative for the potential formation of βB3-crystallins cross-links by protein-bound N1-N8-bis(γ-glutamyl)SPD. In conclusion, FAD-PAO degradation of the N8-terminal reactive residue of the crystallins bound N1-mono(γ-glutamyl)SPD together with the increased concentration of exogenous SPD, leading to saturation of glutamine residues on the substrate proteins, drastically reduces N1-N8-bis(γ-glutamyl)SPD crosslinks formation, preventing crystallins polymerization and avoiding rabbit lens opacification. The ability of SPD and MDL 72527 to modulate the activities of TG2 and FAD-PAO involved in the mechanism of lens opacification suggests a potential strategy for the prevention of senile cataract.


2020 ◽  
Vol 53 (4) ◽  
pp. 863-874
Author(s):  
Kyle W. Roskamp ◽  
Carolyn N. Paulson ◽  
William D. Brubaker ◽  
Rachel W. Martin
Keyword(s):  
Eye Lens ◽  

2019 ◽  
Author(s):  
Christina Karakosta ◽  
Argyrios Tzamalis ◽  
Michalis Aivaliotis ◽  
Ioannis Tsinopoulos

AbstractBackground/AimThe aim of this systematic review is to identify all the available data on human lens proteomics with a critical role to age-related cataract formation in order to elucidate the physiopathology of the aging lens.MethodsWe searched on Medline and Cochrane databases. The search generated 328 manuscripts. We included nine original proteomic studies that investigated human cataractous lenses.ResultsDeamidation was the major age-related post-translational modification. There was a significant increase in the amount of αA-crystallin D-isoAsp58 present at all ages, while an increase in the extent of Trp oxidation was apparent in cataract lenses when compared to aged normal lenses. During aging, enzymes with oxidized cysteine at critical sites included GAPDH, glutathione synthase, aldehyde dehydrogenase, sorbitol dehydrogenase, and PARK7.ConclusionD-isoAsp in αA crystallin could be associated with the development of age-related cataract in human, by contributing to the denaturation of a crystallin, and decreasing its ability to act as a chaperone. Oxidation of Trp may be associated with nuclear cataract formation in man, while the role of oxidant stress in age-related cataract formation is dominant.SynopsisThe oxidative stress and the post-translational modification of deamidation in lens crystallins seem to play a significant role in the formation of age-related cataract in human.


2019 ◽  
Vol 5 (1) ◽  
pp. 123-149 ◽  
Author(s):  
Alan Shiels ◽  
J. Fielding Hejtmancik

Cataract, the clinical correlate of opacity or light scattering in the eye lens, is usually caused by the presence of high-molecular-weight (HMW) protein aggregates or disruption of the lens microarchitecture. In general, genes involved in inherited cataracts reflect important processes and pathways in the lens including lens crystallins, connexins, growth factors, membrane proteins, intermediate filament proteins, and chaperones. Usually, mutations causing severe damage to proteins cause congenital cataracts, while milder variants increasing susceptibility to environmental insults are associated with age-related cataracts. These may have different pathogenic mechanisms: Congenital cataracts induce the unfolded protein response and apoptosis. By contrast, denatured crystallins in age-related cataracts are bound by α-crystallin and form light-scattering HMW aggregates. New therapeutic approaches to age-related cataracts use chemical chaperones to solubilize HMW aggregates, while attempts are being made to regenerate lenses using endogenous stem cells to treat congenital cataracts.


Sign in / Sign up

Export Citation Format

Share Document