scholarly journals A common computational principle for vibrotactile pitch perception in mouse and human

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mario Prsa ◽  
Deniz Kilicel ◽  
Ali Nourizonoz ◽  
Kuo-Sheng Lee ◽  
Daniel Huber

AbstractWe live surrounded by vibrations generated by moving objects. These oscillatory stimuli propagate through solid substrates, are sensed by mechanoreceptors in our body and give rise to perceptual attributes such as vibrotactile pitch (i.e. the perception of how high or low a vibration’s frequency is). Here, we establish a mechanistic relationship between vibrotactile pitch perception and the physical properties of vibrations using behavioral tasks, in which vibratory stimuli were delivered to the human fingertip or the mouse forelimb. The resulting perceptual reports were analyzed with a model demonstrating that physically different combinations of vibration frequencies and amplitudes can produce equal pitch perception. We found that the perceptually indistinguishable but physically different stimuli follow a common computational principle in mouse and human. It dictates that vibrotactile pitch perception is shifted with increases in amplitude toward the frequency of highest vibrotactile sensitivity. These findings suggest the existence of a fundamental relationship between the seemingly unrelated concepts of spectral sensitivity and pitch perception.

2020 ◽  
Author(s):  
Mario Prsa ◽  
Deniz Kilicel ◽  
Ali Nourizonoz ◽  
Kuo-Sheng Lee ◽  
Daniel Huber

We live surrounded by vibrations generated by moving objects. These oscillatory stimuli can produce sound (i.e. airborne waves) and propagate through solid substrates. Pitch is the main perceptual characteristic of sound, and a similar perceptual attribute seems to exist in the case of substrate vibrations: vibro-tactile pitch. Here, we establish a mechanistic relationship between vibro-tactile pitch perception and the actual physical properties of vibrations using behavioral tasks, in which vibratory stimuli were delivered to the human fingertip or the mouse forelimb. The resulting perceptual reports were analyzed with a model demonstrating that physically different combinations of vibration frequencies and amplitudes can produce equal pitch perception. We found that the perceptually indistinguishable but physically different stimuli follow a common computational principle in mouse and human. It dictates that vibro-tactile pitch perception is shifted with increases in amplitude toward the frequency of highest vibrotactile sensitivity. These findings suggest the existence of a fundamental relationship between the seemingly unrelated concepts of spectral sensitivity and pitch perception.


2018 ◽  
Author(s):  
Mario Prsa ◽  
Daniel Huber

AbstractSensing vibrations that propagate through solid substrates conveys fundamental information about moving objects and other nearby dynamic events. Here we report that neurons responsive to substrate vibrations applied to the mouse forelimb reveal a new way of representing frequency information in the primary somatosensory cortex (S1). In contrast to vibrotactile stimulation of primate glabrous skin, which produces temporally entrained spiking and frequency independent firing rates, we found that mouse S1 neurons rely on a different coding scheme: their spike rates are conspicuously tuned to a preferred frequency of the stimulus. Histology, peripheral nerve block and optogenetic tagging experiments furthermore reveal that these responses are associated with the activation of mechanoreceptors located in deep subdermal tissue of the distal forelimb. We conclude that the encoding of frequency information of substrate-borne vibrations in the mouse S1 might be analogous to the representation of pitch of airborne sound in auditory cortex.


2021 ◽  
Vol 7 (23) ◽  
pp. eabf9117
Author(s):  
Zhaoxiang Yang ◽  
Yonglin He ◽  
Shenglong Liao ◽  
Yingchao Ma ◽  
Xinglei Tao ◽  
...  

Hydrogel coatings pave an avenue for improving the lubricity, biocompatibility, and flexibility of solid surfaces. From the viewpoint of practical applications, this work establishes a scalable method to firmly adhere hydrogel layers to diverse solid surfaces. The strategy, termed as renatured hydrogel painting (RHP), refers to adhering dehydrated xerogel to a surface with appropriate glues, followed by the formation of a hydrogel layer after rehydration of the xerogel. With the benefits of simplicity and generality, this strategy can be readily applied to different hydrogel systems, no matter what the substrate is. Hydrogel adhesion is demonstrated by its tolerance against mechanical impact with hydrodynamic shearing at 14 m/s. This method affords powerful supplements to renew the surface chemistry and physical properties of solid substrates. In addition, we show that the RHP technique can be applied to living tissue, with potential for clinical applications such as the protection of bone tissue.


1976 ◽  
Vol 32 ◽  
pp. 365-377 ◽  
Author(s):  
B. Hauck
Keyword(s):  

The Ap stars are numerous - the photometric systems tool It would be very tedious to review in detail all that which is in the literature concerning the photometry of the Ap stars. In my opinion it is necessary to examine the problem of the photometric properties of the Ap stars by considering first of all the possibility of deriving some physical properties for the Ap stars, or of detecting new ones. My talk today is prepared in this spirit. The classification by means of photoelectric photometric systems is at the present time very well established for many systems, such as UBV, uvbyβ, Vilnius, Geneva and DDO systems. Details and methods of classification can be found in Golay (1974) or in the proceedings of the Albany Colloquium edited by Philip and Hayes (1975).


Author(s):  
Frederick A. Murphy ◽  
Alyne K. Harrison ◽  
Sylvia G. Whitfield

The bullet-shaped viruses are currently classified together on the basis of similarities in virion morphology and physical properties. Biologically and ecologically the member viruses are extremely diverse. In searching for further bases for making comparisons of these agents, the nature of host cell infection, both in vivo and in cultured cells, has been explored by thin-section electron microscopy.


Author(s):  
K.P.D. Lagerlof

Although most materials contain more than one phase, and thus are multiphase materials, the definition of composite materials is commonly used to describe those materials containing more than one phase deliberately added to obtain certain desired physical properties. Composite materials are often classified according to their application, i.e. structural composites and electronic composites, but may also be classified according to the type of compounds making up the composite, i.e. metal/ceramic, ceramic/ceramie and metal/semiconductor composites. For structural composites it is also common to refer to the type of structural reinforcement; whisker-reinforced, fiber-reinforced, or particulate reinforced composites [1-4].For all types of composite materials, it is of fundamental importance to understand the relationship between the microstructure and the observed physical properties, and it is therefore vital to properly characterize the microstructure. The interfaces separating the different phases comprising the composite are of particular interest to understand. In structural composites the interface is often the weakest part, where fracture will nucleate, and in electronic composites structural defects at or near the interface will affect the critical electronic properties.


Author(s):  
James Mark ◽  
Kia Ngai ◽  
William Graessley ◽  
Leo Mandelkern ◽  
Edward Samulski ◽  
...  
Keyword(s):  

1982 ◽  
Vol 85 (1) ◽  
pp. 257-263 ◽  
Author(s):  
A. Graja ◽  
M. Przybylski ◽  
B. Butka ◽  
R. Swietlik

Sign in / Sign up

Export Citation Format

Share Document