scholarly journals The slow self-arresting nature of low-frequency earthquakes

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xueting Wei ◽  
Jiankuan Xu ◽  
Yuxiang Liu ◽  
Xiaofei Chen

AbstractLow-frequency earthquakes are a series of recurring small earthquakes that are thought to compose tectonic tremors. Compared with regular earthquakes of the same magnitude, low-frequency earthquakes have longer source durations and smaller stress drops and slip rates. The mechanism that drives their unusual type of stress accumulation and release processes is unknown. Here, we use phase diagrams of rupture dynamics to explore the connection between low-frequency earthquakes and regular earthquakes. By comparing the source parameters of low-frequency earthquakes from 2001 to 2016 in Parkfield, on the San Andreas Fault, with those from numerical simulations, we conclude that low-frequency earthquakes are earthquakes that self-arrest within the rupture patch without any introduced interference. We also explain the scaling property of low-frequency earthquakes. Our findings suggest a framework for fault deformation in which nucleation asperities can release stress through slow self-arrest processes.

1974 ◽  
Vol 64 (6) ◽  
pp. 1855-1886 ◽  
Author(s):  
Lane R. Johnson ◽  
Thomas V. McEvilly

abstract This is a study of source characteristics of 13 earthquakes with magnitudes between 2.4 and 5.1 located near the San Andreas fault in central California. On the basis of hypocentral locations and fault-plane solutions the earthquakes separate into two source groups, one group clearly related to the throughgoing northwest-trending San Andreas fault zone and the other apparently associated with generally north-trending bifurcations such as the Calaveras fault. The basic data consist of broad-band recordings (0.03 to 10 Hz) of these earthquakes at two sites of the San Andreas Geophysical Observatory (SAGO). Epicentral distances range between 2 and 40 km, and maximum ground displacements from 4 to 4000 microns were recorded. The whole-record spectra computed from the seismograms lend themselves to source parameter studies in that they can be interpreted in terms of low-frequency level, corner frequency, and high-frequency slope. Synthetic seismograms have also been used to estimate source parameters in both the time domain and frequency domain, and the results compare favorably with those estimated directly from the spectra. The influences of tilts and nonlinear response of the seismometer were considered in the interpretation of the low frequencies. Seismic source moments estimated from the low-frequency levels of the spectra show a linear dependence on magnitude with a slope slightly greater than 1. The geology at the recording site can contribute an uncertainty factor of at least 3 to the estimated moments. Observed corner frequencies are only weakly dependent on magnitude. Interpreted in terms of source dimension, these corner frequencies imply values of 1 to 2 km for the earthquakes of this study. The corner frequencies may also be interpreted in terms of the rise time source function, yielding values in the range 0.5 to 1.0 sec. The data indicate that the earthquakes of this study are all surprisingly similar in their fundamental source parameters, with only the seismic moment showing a strong dependence on magnitude.


2016 ◽  
Vol 43 (4) ◽  
pp. 1464-1471 ◽  
Author(s):  
Amanda M. Thomas ◽  
Gregory C. Beroza ◽  
David R. Shelly

1991 ◽  
Vol 81 (2) ◽  
pp. 553-575 ◽  
Author(s):  
Michael Fehler ◽  
W. Scott Phillips

Abstract An inversion that fits spectra of earthquake waveforms and gives robust estimates of corner frequency and low-frequency spectral amplitude has been used to determine source parameters of 223 microearthquakes induced by hydraulic fracturing in granodiorite. Assuming a ω−2 source model, the inversion fits the P-wave spectra of microearthquake waveforms to determine individual values of corner frequency and low-frequency spectral amplitude for each event and one average frequency-independent Q for all source-receiver paths. We also implemented a constraint that stress drops of all microearthquakes be similar but not equal and found that this constraint did not significantly degrade the quality of the fits to the spectra. The waveforms analyzed were recorded by a borehole seismometer. The P-wave Q was found to be 1070. For Q values as low as 600 and as high as 3000, the misfit between model and spectra increased by less than 5 per cent and the average corner frequency changed by less than 15 per cent from those obtained with a Q of 1070. Average stress drop was 3.7 bars. Seismic moments obtained from spectra ranged from 1013 to 1018 dyne-cm. The low stress drops are interpreted to result from underestimation of the actual stress drops because of a nonuniform distribution of stress drop and slip along the fault planes. Spatially varying stress drops and slips result from the strong rock heterogeneity due to the injection of fluid into the rock. Stress drops were found to be larger near the edges of the seismic zone, in regions that had not been seismically active during previous injections. The seismic moments determined from spectra were used to obtain a coda length-to-moment relation. Then, moments were estimated for 1149 events from measurements of coda lengths from events whose moments could not be measured from spectra because of saturation or a low signal-to-noise ratio. The constant of proportionality between cumulative number of events and seismic moment is higher than that found for tectonic regions. The slope is so high that the seismic energy release is dominated by the large number of small events. In the absence of information about the number of events smaller than we studied, we cannot estimate the total seismic energy released by the hydraulic injection.


2021 ◽  
Vol 7 (13) ◽  
pp. eaaz5691
Author(s):  
Kimberly Blisniuk ◽  
Katherine Scharer ◽  
Warren D. Sharp ◽  
Roland Burgmann ◽  
Colin Amos ◽  
...  

The San Andreas fault has the highest calculated time-dependent probability for large-magnitude earthquakes in southern California. However, where the fault is multistranded east of the Los Angeles metropolitan area, it has been uncertain which strand has the fastest slip rate and, therefore, which has the highest probability of a destructive earthquake. Reconstruction of offset Pleistocene-Holocene landforms dated using the uranium-thorium soil carbonate and beryllium-10 surface exposure techniques indicates slip rates of 24.1 ± 3 millimeter per year for the San Andreas fault, with 21.6 ± 2 and 2.5 ± 1 millimeters per year for the Mission Creek and Banning strands, respectively. These data establish the Mission Creek strand as the primary fault bounding the Pacific and North American plates at this latitude and imply that 6 to 9 meters of elastic strain has accumulated along the fault since the most recent surface-rupturing earthquake, highlighting the potential for large earthquakes along this strand.


2020 ◽  
Author(s):  
Christopher Johnson ◽  
Claudia Hulbert ◽  
Bertrand Rouet-Leduc ◽  
Paul Johnson

1981 ◽  
Vol 71 (1) ◽  
pp. 295-319
Author(s):  
A. McGarr ◽  
R. W. E. Green ◽  
S. M. Spottiswoode

abstract Ground acceleration was recorded at a depth of about 3 km in the East Rand Proprietary Mines, South Africa, for tremors with −1 ≦ ML ≦ 2.6 in the hypocentral distance range 50 m < R ≦ 1.6 km. The accelerograms typically had predominant frequencies of several hundred Hertz and peak accelerations, a, as high as 12 g. The peak accelerations show a dependence on magnitude, especially when expressed as dynamic shear-stress differences, defined as σ˜ = ρRa, where ρ is density. For the mine tremors, σ˜ varies from 2 to 500 bars and depends on magnitude according to log σ˜ = 1.40 + 0.38 · ML. Accelerograms for 12 events were digitized and then processed to determine velocity and, for seven events with especially good S/N, displacement and seismic source parameters. Peak ground velocities v ranged up to 6 cm/sec and show a well-defined dependence one earthquake size as measured by ML or by seismic moment, Mo. On the basis of regression fits to the mine data, with −0.76 ≦ ML ≦ 1.45, log Rv = 3.95 + 0.57 ML, where Rv is in cm2/sec, and log Rv = −4.68 + 0.49 log Mo. These regression lines agree excellently with the corresponding data for earthquakes of ML up to 6.4 or Mo to 1.4 × 1026 dyne-cm. At a given value of ML or Mo, a, at fixed R, shows considerably greater variation than v and appears to depend on the bandwidth of the recording system. The peak acceleration at small hypocentral distances is broadly consistent with ρRa = 1.14 Δτrofs/β, where Δτ is stress drop, ro is the source radius, β is shear velocity, and fs is the bandwidth of the recording system. The peak velocity data agree well with Rv = 0.57 βΔτro/μ, where μ is the modulus of rigidity; both expressions follow from Brune's model of the seismic source and were compared with data for events in the size range 5 × 1016 ≦ Mo ≦ 1.4 × 1026 dyne-cm. Measurements of the source parameters indicated that, as for earthquakes, the stress drops for the tremors range from 1 to 100 bars and show no consistent dependence on Mo down to Mo = 5 × 1016 dyne-cm.


Geosphere ◽  
2020 ◽  
Author(s):  
Katherine A. Guns ◽  
Richard A Bennett ◽  
Joshua C. Spinler ◽  
Sally F. McGill

Assessing fault-slip rates in diffuse plate boundary systems such as the San Andreas fault in southern California is critical both to characterize seis­mic hazards and to understand how different fault strands work together to accommodate plate boundary motion. In places such as San Gorgonio Pass, the geometric complexity of numerous fault strands interacting in a small area adds an extra obstacle to understanding the rupture potential and behavior of each individual fault. To better understand partitioning of fault-slip rates in this region, we build a new set of elastic fault-block models that test 16 different model fault geometries for the area. These models build on previ­ous studies by incorporating updated campaign GPS measurements from the San Bernardino Mountains and Eastern Transverse Ranges into a newly calculated GPS velocity field that has been removed of long- and short-term postseismic displacements from 12 past large-magnitude earthquakes to estimate model fault-slip rates. Using this postseismic-reduced GPS velocity field produces a best- fitting model geometry that resolves the long-standing geologic-geodetic slip-rate discrepancy in the Eastern California shear zone when off-fault deformation is taken into account, yielding a summed slip rate of 7.2 ± 2.8 mm/yr. Our models indicate that two active strands of the San Andreas system in San Gorgonio Pass are needed to produce sufficiently low geodetic dextral slip rates to match geologic observations. Lastly, results suggest that postseismic deformation may have more of a role to play in affecting the loading of faults in southern California than previously thought.


Sign in / Sign up

Export Citation Format

Share Document