Simultaneous inversion for Q and source parameters of microearthquakes accompanying hydraulic fracturing in granitic rock

1991 ◽  
Vol 81 (2) ◽  
pp. 553-575 ◽  
Author(s):  
Michael Fehler ◽  
W. Scott Phillips

Abstract An inversion that fits spectra of earthquake waveforms and gives robust estimates of corner frequency and low-frequency spectral amplitude has been used to determine source parameters of 223 microearthquakes induced by hydraulic fracturing in granodiorite. Assuming a ω−2 source model, the inversion fits the P-wave spectra of microearthquake waveforms to determine individual values of corner frequency and low-frequency spectral amplitude for each event and one average frequency-independent Q for all source-receiver paths. We also implemented a constraint that stress drops of all microearthquakes be similar but not equal and found that this constraint did not significantly degrade the quality of the fits to the spectra. The waveforms analyzed were recorded by a borehole seismometer. The P-wave Q was found to be 1070. For Q values as low as 600 and as high as 3000, the misfit between model and spectra increased by less than 5 per cent and the average corner frequency changed by less than 15 per cent from those obtained with a Q of 1070. Average stress drop was 3.7 bars. Seismic moments obtained from spectra ranged from 1013 to 1018 dyne-cm. The low stress drops are interpreted to result from underestimation of the actual stress drops because of a nonuniform distribution of stress drop and slip along the fault planes. Spatially varying stress drops and slips result from the strong rock heterogeneity due to the injection of fluid into the rock. Stress drops were found to be larger near the edges of the seismic zone, in regions that had not been seismically active during previous injections. The seismic moments determined from spectra were used to obtain a coda length-to-moment relation. Then, moments were estimated for 1149 events from measurements of coda lengths from events whose moments could not be measured from spectra because of saturation or a low signal-to-noise ratio. The constant of proportionality between cumulative number of events and seismic moment is higher than that found for tectonic regions. The slope is so high that the seismic energy release is dominated by the large number of small events. In the absence of information about the number of events smaller than we studied, we cannot estimate the total seismic energy released by the hydraulic injection.

2020 ◽  
Author(s):  
Adam Klinger ◽  
Max Werner

<p>Hydraulic fracturing underpins tight shale gas exploration but can induce seismicity. During stimulations, operators carefully monitor the spatio-temporal distribution and source parameters of seismic events to be able to respond to any changes and potentially reduce the chances of fault reactivation. Downhole arrays of geophones offer unique access to (sub) microseismic source parameters and can provide new insights into the processes that induce seismicity. For example, variations in stress drop might indicate changes in the seismic response to injection (e.g. pore pressure variations). However, borehole arrays of geophones and the high frequencies of small events also present new challenges for source characterization. Stress drop depends on the corner frequency, a parameter with great uncertainty that is sensitive to attenuation, especially for (sub-) microseismicity. Here, we explore the behavior of microseismic spectra measured along borehole arrays and the effect of attenuation on estimates of corner frequency. We examine a dataset of over 90,000 microseismic events recorded during hydraulic fracturing in the Horn River Basin, British Columbia. We only see clear phase arrivals for events M<sub>w</sub> > -1 and restrict our initial analysis to a subsample of M<sub>w</sub>> 0 events that vary in space and time.</p><p>Our first observation is that some stations in the borehole array show an unexpected increase in the displacement energy from the low frequency to the corner frequency in the P and SH phases as well as high-frequency energy spikes inconsistent with a smooth Brune source model. A shorter time window that only captures the direct arrival results in a flatter low frequency plateau and reduces the amplitude of the pulses but compromises the resolution. The spikes may be caused by high frequency coda energy. We also find that corner frequency estimates decrease with decreasing station depth along the array in both the P and SH phases, a likely result of high frequency attenuation along the downhole array. The findings suggest Brune corner frequencies of moment magnitudes < 0.5 may not be resolvable even with downhole arrays at close proximity. Our results will eventually contribute to a better characterization of microseismic source parameters measured in borehole arrays.</p><p> </p>


Author(s):  
Seong Ju Jeong ◽  
Brian W. Stump ◽  
Heather R. DeShon ◽  
Louis Quinones

ABSTRACT Earthquakes in the Fort Worth basin (FWB) have been induced by the disposal of recovered wastewater associated with extraction of unconventional gas since 2008. Four of the larger felt earthquakes, each on different faults, prompted deployment of local distance seismic stations and recordings from these four sequences are used to estimate the kinematic source characteristics. Source spectra and the associated source parameters, including corner frequency, seismic moment, and stress drop, are estimated using a modified generalized inversion technique (GIT). As an assessment of the validity of the modified GIT approach, corner frequencies and stress drops from the GIT are compared to estimates using the traditional empirical Green’s function (EGF) method for 14 target events. For these events, corner-frequency residuals (GIT−EGF) have a mean of −0.31 Hz, with a standard deviation of 1.30 Hz. We find consistent mean stress drops using the GIT and EGF methods, 9.56 and 11.50 MPa, respectively, for the common set of target events. The GIT mean stress drop for all 79 earthquakes is 5.33 MPa, similar to estimates for global intraplate earthquakes (1–10 MPa) as well as other estimates for induced earthquakes near the study area (1.7–9.5 MPa). Stress drops exhibit no spatial or temporal correlations or depth dependency. In addition, there are no time or space correlations between estimated FWB stress drops and modeled pore-pressure perturbations. We conclude that induced earthquakes in the FWB occurring on normal faults in the crystalline basement release pre-existing tectonic stresses and that stress drops on the four sequences targeted in this study do not directly reflect perturbations in pore-fluid pressure on the fault.


Author(s):  
Bei Wang ◽  
Rebecca M. Harrington ◽  
Yajing Liu ◽  
Honn Kao ◽  
Hongyu Yu

ABSTRACT On 17 August 2015, an Mw 4.6 earthquake occurred northwest of Fort St. John, British Columbia, possibly induced by hydraulic fracturing (HF). We use data from eight broadband seismometers located ∼50  km from the hypocenter to detect and estimate source parameters of more than 300 events proximal to the mainshock. Stress-drop values estimated using seismic moment and corner frequency from single-event spectra and spectral ratios range from ∼1 to 35 MPa, within the typical range of tectonic earthquakes. We observe an ∼5-day delay between the onset of fluid injection and the mainshock, a b-value of 0.78 for the sequence, and a maximum earthquake magnitude larger than the prediction based on the total injection volume, suggesting that the Mw 4.6 sequence occurred on a pre-existing fault and that the maximum magnitude is likely controlled by tectonic conditions. Results presented here show that pre-existing fault structures should be taken into consideration to better estimate seismic hazard associated with HF operations and to develop schemes for risk mitigation in close proximity to HF wells.


2020 ◽  
Vol 224 (2) ◽  
pp. 1371-1380
Author(s):  
Aglaja Blanke ◽  
Grzegorz Kwiatek ◽  
Thomas H W Goebel ◽  
Marco Bohnhoff ◽  
Georg Dresen

SUMMARY Earthquake source parameters such as seismic stress drop and corner frequency are observed to vary widely, leading to persistent discussion on potential scaling of stress drop and event size. Physical mechanisms that govern stress drop variations are difficult to evaluate in nature and are more readily studied in controlled laboratory experiments. We perform two stick-slip experiments on fractured (rough) and cut (smooth) Westerly granite samples to explore fault roughness effects on acoustic emission (AE) source parameters. We separate large stick-slip events that generally saturate the seismic recording system from populations of smaller AE events which are sensitive to fault stresses prior to slip. AE event populations show many similarities to natural seismicity and may be interpreted as laboratory equivalent of natural microseismic events. We then compare the temporal evolution of mechanical data such as measured stress release during slip to temporal changes in stress drops derived from AEs using the spectral ratio technique. We report on two primary observations: (1) In contrast to most case studies for natural earthquakes, we observe a strong increase in seismic stress drop with AE size. (2) The scaling of stress drop with magnitude is governed by fault roughness, whereby the rough fault shows a more rapid increase of the stress drop–magnitude relation with progressing large stick-slip events than the smooth fault. The overall range of AE sizes on the rough surface is influenced by both the average grain size and the width of the fault core. The magnitudes of the smallest AE events on smooth faults may also be governed by grain size. However, AEs significantly grow beyond peak roughness and the width of the fault core. Our laboratory tests highlight that source parameters vary substantially in the presence of fault zone heterogeneity (i.e. roughness and narrow grain size distribution), which may affect seismic energy partitioning and static stress drops of small and large AE events.


2019 ◽  
Vol 109 (5) ◽  
pp. 1635-1652 ◽  
Author(s):  
Joanna M. Holmgren ◽  
Gail M. Atkinson ◽  
Hadi Ghofrani

Abstract The Western Canada sedimentary basin (WCSB) has experienced an increase in seismicity during the last decade due primarily to hydraulic fracturing. Understanding the ground motions of these induced earthquakes is critical to characterize the increase in hazard. Stress drop is considered an important parameter in this context because it is a measure of the high‐frequency content of the shaking. We use the empirical Green’s function (EGF) method to determine S‐wave corner frequencies and stress drops of 87 earthquakes of moment magnitude (M) 2.3–4.4 in the WCSB. The EGF method is an effective technique to isolate earthquake source effects by dividing out the path and site components in the frequency domain, using a smaller collocated earthquake as an EGF. The corner frequency of the target event is determined for an assumed spectral ratio shape, from which the stress drop is computed. Assuming a fixed velocity, we find that the average stress drop for induced earthquakes in the WCSB for small‐to‐moderate events is 7.5±0.5  MPa, with a total range from 0.2 to 370 MPa. However, because of the dependence of stress drop on model conventions and constants, we consider the absolute stress‐drop value meaningful only for comparison with other results using the same underlying models. By contrast, corner frequency is a less‐ambiguous variable with which to characterize the source spectrum. The range of corner frequencies obtained in this study for events of M 4.0±0.5 is 1.1–5.8 Hz. Significant rupture directivity is observed for more than one‐third of the earthquakes, with station corner frequencies varying by about a factor of 4 with azimuth. This emphasizes the importance of having suitable station coverage to determine source parameters. We model directivity where evident using a Haskell source model and find that the rupture azimuths are primarily oriented approximately north–south throughout the region.


1995 ◽  
Vol 85 (6) ◽  
pp. 1604-1621 ◽  
Author(s):  
Yingping Li ◽  
Charles Doll ◽  
M. N. Toksöz

Abstract Two earthquake doublets and two multiplets recorded by the Charlevoix Telemetered Network (CLTN) in the Charlevoix Seismic Zone (CSZ) of southern Quebec, Canada, have been analyzed using an empirical Green's function (EGF) method to derive the relative source time functions (RSTF's) of seven master events with MbLg = 1.2 to 4.4. We identified the doublets and multiplets using a waveform cross-correlation and relative event location technique to verify that each earthquake pair had similar focal mechanisms and hypocentral locations. Three-component S waveforms recorded by the high dynamic range (126 dB) instrumentation of the CLTN were used to extract the RSTF's. The RSTF's reveal that six of the seven events are simple with single-source pulses having durations of 0.05 to 0.2 sec. Another earthquake (920310-0545, M 3.3) appears to be a double event with two episodes of rupturing. Azimuthal variations of the RSTF pulse amplitudes and widths provide strong evidence for the rupture directivities of five of the earthquakes (M = 1.2 to 4.4). The azimuthal variations in the RSTF pulse amplitudes were used to estimate the rupture directions and rupture velocities. Lower-bound estimates of the rupture velocity range from 0.5 to 0.7 Vs. Estimates of the rupture direction were combined with P-wave focal mechanisms for the four largest events (M 3.3 to 4.4) to identify the fault plane for these earthquakes. Source parameters were measured for the RSTF's of the master events, including seismic moments of 3.5 × 1018 to 5.3 × 1021 dyne-cm, fault radii of 100 to 330 m, and static stress drops of 2 to 90 bars. The fault radii and stress-drop estimates for M > 3 events agree well with estimates obtained by other researchers for M ∼ 3 to 4.5 earthquakes in the CSZ. We also observed apparent scaling between the stress drop and the earthquake size, which has been reported in other studies of stress drop in northeastern North America.


1983 ◽  
Vol 4 ◽  
pp. 304-304
Author(s):  
Charles Cleland Rosé

The monitoring of the number of acoustic seismic impulses arising from snow instabilities is regarded as a relative indicator of an unstable snow slope but has not yielded a qualitative, predictive indicator. Until now, the source parameters (fracture area and length), seismic moment, energy released, stress drop, and location of acoustic seismic emissions arising from the snowpack have been neglected. A comprehension of these parameters leads to a better understanding of the event and may help in avalanche prediction.The location of a seismic event is derived from time differences between P-wave arrivals at four sensors located at the snow-ground interface. Three methods confirm the location of an acoustic seismic snow event to within 2 to 4 cm when the event is inside a seismic net.Spectral analyses of body waves from seismic snow events yield estimates of source parameters, stress drop and energy released. Equivalent dislocation surface radii range from 4.8 to 9.0 cm, which give stress drops of 0.20 to 0.29 bar, with a dissipated energy in the range of 0.0205 to 0.0632 J.Spectral analysis of the acoustic seismic snow event with application of dislocation theory provides several likely methods to predict avalanches of a climax type.


1983 ◽  
Vol 4 ◽  
pp. 304
Author(s):  
Charles Cleland Rosé

The monitoring of the number of acoustic seismic impulses arising from snow instabilities is regarded as a relative indicator of an unstable snow slope but has not yielded a qualitative, predictive indicator. Until now, the source parameters (fracture area and length), seismic moment, energy released, stress drop, and location of acoustic seismic emissions arising from the snowpack have been neglected. A comprehension of these parameters leads to a better understanding of the event and may help in avalanche prediction. The location of a seismic event is derived from time differences between P-wave arrivals at four sensors located at the snow-ground interface. Three methods confirm the location of an acoustic seismic snow event to within 2 to 4 cm when the event is inside a seismic net. Spectral analyses of body waves from seismic snow events yield estimates of source parameters, stress drop and energy released. Equivalent dislocation surface radii range from 4.8 to 9.0 cm, which give stress drops of 0.20 to 0.29 bar, with a dissipated energy in the range of 0.0205 to 0.0632 J. Spectral analysis of the acoustic seismic snow event with application of dislocation theory provides several likely methods to predict avalanches of a climax type.


1983 ◽  
Vol 73 (6A) ◽  
pp. 1499-1511
Author(s):  
Paul Silver

Abstract A method is proposed for retrieving source-extent parameters from far-field body-wave data. At low frequency, the normalized P- or S-wave displacement amplitude spectrum can be approximated by |Ω^(r^,ω)| = 1 − τ2(r^)ω2/2 where r^ specifies a point on the focal sphere. For planar dislocation sources, τ2(r^) is linearly related to statistical measures of source dimension, source duration, and directivity. τ2(r^) can be measured as the curvature of |Ω^(r^,ω)| at ω = 0 or the variance of the pulse Ω^(r^,t). The quantity ωc=2τ−1(r^) is contrasted with the traditional corner frequency ω0, defined as the frequency at the intersection of the low- and high-frequency trends of |Ω^(r^,ω)|. For dislocation models without directivity, ωc(P) ≧ ωc(S) for any r^. A mean corner frequency defined by averaging τ2(r^) over the focal sphere, ω¯c=2<τ2(r^)>−1/2, satisfies ωc(P) > ωc(S) for any dislocation source. This behavior is not shared by ω0. It is shown that ω0 is most sensitive to critical times in the rupture history of the source, whereas ωc is determined by the basic parameters of source extent. Evidence is presented that ωc is the corner frequency measured on actual seismograms. Thus, the commonly observed corner frequency shift (P-wave corner greater than the S-wave corner), now viewed as a shift in ωc is simply a result of spatial finiteness and is expected to be a property of any dislocation source. As a result, the shift cannot be used as a criterion for rejecting particular dislocation models.


1973 ◽  
Vol 63 (2) ◽  
pp. 599-614 ◽  
Author(s):  
M. E. O'Neill ◽  
J. H. Healy

abstract A simple method of estimating source dimensions and stress drops of small earthquakes is presented. The basic measurement is the time from the first break to the first zero crossing on short-period seismograms. Graphs relating these measurements to rise time as a function of Q and instrument response permit an estimate of earthquake source parameters without the calculation of spectra. Tests on data from Rangely, Colorado, and Hollister, California, indicate that the method gives reasonable results.


Sign in / Sign up

Export Citation Format

Share Document