scholarly journals Observation of spin-space quantum transport induced by an atomic quantum point contact

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Koki Ono ◽  
Toshiya Higomoto ◽  
Yugo Saito ◽  
Shun Uchino ◽  
Yusuke Nishida ◽  
...  

AbstractQuantum transport is ubiquitous in physics. So far, quantum transport between terminals has been extensively studied in solid state systems from the fundamental point of views such as the quantized conductance to the applications to quantum devices. Recent works have demonstrated a cold-atom analog of a mesoscopic conductor by engineering a narrow conducting channel with optical potentials, which opens the door for a wealth of research of atomtronics emulating mesoscopic electronic devices and beyond. Here we realize an alternative scheme of the quantum transport experiment with ytterbium atoms in a two-orbital optical lattice system. Our system consists of a multi-component Fermi gas and a localized impurity, where the current can be created in the spin space by introducing the spin-dependent interaction with the impurity. We demonstrate a rich variety of localized-impurity-induced quantum transports, which paves the way for atomtronics exploiting spin degrees of freedom.

2020 ◽  
Vol 29 (3) ◽  
pp. 030302
Author(s):  
Qian Du ◽  
Kang Lan ◽  
Yan-Hui Zhang ◽  
Lu-Jing Jiang

2002 ◽  
Vol 81 (9) ◽  
pp. 1699-1701 ◽  
Author(s):  
A. N. Cleland ◽  
J. S. Aldridge ◽  
D. C. Driscoll ◽  
A. C. Gossard

2014 ◽  
Vol 104 (20) ◽  
pp. 203102 ◽  
Author(s):  
A. A. Shevyrin ◽  
A. G. Pogosov ◽  
M. V. Budantsev ◽  
A. K. Bakarov ◽  
A. I. Toropov ◽  
...  

2016 ◽  
Vol 113 (44) ◽  
pp. 12386-12390 ◽  
Author(s):  
Hailong Fu ◽  
Pengjie Wang ◽  
Pujia Shan ◽  
Lin Xiong ◽  
Loren N. Pfeiffer ◽  
...  

Some theories predict that the filling factor 5/2 fractional quantum Hall state can exhibit non-Abelian statistics, which makes it a candidate for fault-tolerant topological quantum computation. Although the non-Abelian Pfaffian state and its particle-hole conjugate, the anti-Pfaffian state, are the most plausible wave functions for the 5/2 state, there are a number of alternatives with either Abelian or non-Abelian statistics. Recent experiments suggest that the tunneling exponents are more consistent with an Abelian state rather than a non-Abelian state. Here, we present edge-current–tunneling experiments in geometrically confined quantum point contacts, which indicate that Abelian and non-Abelian states compete at filling factor 5/2. Our results are consistent with a transition from an Abelian state to a non-Abelian state in a single quantum point contact when the confinement is tuned. Our observation suggests that there is an intrinsic non-Abelian 5/2 ground state but that the appropriate confinement is necessary to maintain it. This observation is important not only for understanding the physics of the 5/2 state but also for the design of future topological quantum computation devices.


2012 ◽  
Vol 101 (13) ◽  
pp. 133104 ◽  
Author(s):  
M. Montinaro ◽  
A. Mehlin ◽  
H. S. Solanki ◽  
P. Peddibhotla ◽  
S. Mack ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document