scholarly journals From Slater to Mott physics by epitaxially engineering electronic correlations in oxide interfaces

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Carla Lupo ◽  
Evan Sheridan ◽  
Edoardo Fertitta ◽  
David Dubbink ◽  
Chris J. Pickard ◽  
...  

AbstractUsing spin-assisted ab initio random structure searches, we explore an exhaustive quantum phase diagram of archetypal interfaced Mott insulators, i.e. lanthanum-iron and lanthanum-titanium oxides. In particular, we report that the charge transfer induced by the interfacial electronic reconstruction stabilises a high-spin ferrous Fe2+ state. We provide a pathway to control the strength of correlation in this electronic state by tuning the epitaxial strain, yielding a manifold of quantum electronic phases, i.e. Mott-Hubbard, charge transfer and Slater insulating states. Furthermore, we report that the electronic correlations are closely related to the structural oxygen octahedral rotations, whose control is able to stabilise the low-spin state of Fe2+ at low pressure previously observed only under the extreme high pressure conditions in the Earth’s lower mantle. Thus, we provide avenues for magnetic switching via THz radiations which have crucial implications for next generation of spintronics technologies.

2011 ◽  
Vol 1307 ◽  
Author(s):  
Artem R. Oganov

ABSTRACTγ-B28 is a recently discovered high-pressure phase of boron, with the structure consisting f icosahedral B12 clusters and B2 pairs in a NaCl-type arrangement: (B2)δ+(B12)δ-, and displaying a significant charge transfer δ~0.48. Boron is the only light element, for which the phase diagram has become clear only a few years ago, with the discovery of γ-B28, and this phase diagram is discussed here among other recent findings. γ-B28 was first experimentally obtained as a pure boron allotrope in early 2004 by J.H. Chen and V.L. Solozhenko (although a similar diffraction pattern was published in a 1965 by R.H. Wentorf, in a paper that until recently was believed to be wrong) and its unique structure was discovered by A.R. Oganov in 2006 with the use of the ab initio evolutionary algorithm USPEX (Oganov & Glass, 2006) and later confirmed by other studies. This allotrope, thermodynamically stable at high pressures, is shown to be also quenchable and dynamically stable upon decompression to 1 atm, and we show its phonon dispersion curves. Present discussion includes also the relative stability of other boron allotropes as a function of pressure. We also discuss more recent publications on the putative isosymmetric phase transition in γ-B28 and the nature of chemical bonding in it. We demonstrate that a qualitative difference in the evolution of the band gap of γ-B28 and the related α-B12 structure, which is due to the partial ionicity of γ-B28.


2014 ◽  
Vol 113 (18) ◽  
Author(s):  
Juan Salafranca ◽  
Julián Rincón ◽  
Javier Tornos ◽  
Carlos León ◽  
Jacobo Santamaria ◽  
...  

2016 ◽  
Vol 12 (5) ◽  
pp. 484-492 ◽  
Author(s):  
M. N. Grisolia ◽  
J. Varignon ◽  
G. Sanchez-Santolino ◽  
A. Arora ◽  
S. Valencia ◽  
...  

2015 ◽  
Vol 91 (13) ◽  
Author(s):  
Agnès Dewaele ◽  
Vincent Stutzmann ◽  
Johann Bouchet ◽  
François Bottin ◽  
Florent Occelli ◽  
...  

ChemPhotoChem ◽  
2018 ◽  
Vol 2 (5) ◽  
pp. 382-382
Author(s):  
Toshikazu Ono ◽  
Yoshifumi Tsukiyama ◽  
Ai Taema ◽  
Hiroyasu Sato ◽  
Hidetoshi Kiyooka ◽  
...  

2015 ◽  
Vol 107 (22) ◽  
pp. 221908 ◽  
Author(s):  
Serge Desgreniers ◽  
John S. Tse ◽  
Takahiro Matsuoka ◽  
Yasuo Ohishi ◽  
Quan Li ◽  
...  

2021 ◽  
Vol 200 ◽  
pp. 110806
Author(s):  
Wanaruk Chaimayo ◽  
Prutthipong Tsuppayakorn-aek ◽  
Prayoonsak Pluengphon ◽  
Komsilp Kotmool ◽  
Teerachote Pakornchote ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document