scholarly journals Publisher Correction: Birkeland currents in Jupiter’s magnetosphere observed by the polar-orbiting Juno spacecraft

2019 ◽  
Vol 3 (11) ◽  
pp. 1029-1029 ◽  
Author(s):  
Stavros Kotsiaros ◽  
John E. P. Connerney ◽  
George Clark ◽  
Frederic Allegrini ◽  
G. Randall Gladstone ◽  
...  
Keyword(s):  
1985 ◽  
Vol 42 (3-4) ◽  
Author(s):  
ThomasA. Potemra
Keyword(s):  

2010 ◽  
Vol 28 (2) ◽  
pp. 515-530 ◽  
Author(s):  
H. Korth ◽  
B. J. Anderson ◽  
C. L. Waters

Abstract. The spatial distributions of large-scale field-aligned Birkeland currents have been derived using magnetic field data obtained from the Iridium constellation of satellites from February 1999 to December 2007. From this database, we selected intervals that had at least 45% overlap in the large-scale currents between successive hours. The consistency in the current distributions is taken to indicate stability of the large-scale magnetosphere–ionosphere system to within the spatial and temporal resolution of the Iridium observations. The resulting data set of about 1500 two-hour intervals (4% of the data) was sorted first by the interplanetary magnetic field (IMF) GSM clock angle (arctan(By/Bz)) since this governs the spatial morphology of the currents. The Birkeland current densities were then corrected for variations in EUV-produced ionospheric conductance by normalizing the current densities to those occurring for 0° dipole tilt. To determine the dependence of the currents on other solar wind variables for a given IMF clock angle, the data were then sorted sequentially by the following parameters: the solar wind electric field in the plane normal to the Earth–Sun line, Eyz; the solar wind ram pressure; and the solar wind Alfvén Mach number. The solar wind electric field is the dominant factor determining the Birkeland current intensities. The currents shift toward noon and expand equatorward with increasing solar wind electric field. The total current increases by 0.8 MA per mV m−1 increase in Eyz for southward IMF, while for northward IMF it is nearly independent of the electric field, increasing by only 0.1 MA per mV m−1 increase in Eyz. The dependence on solar wind pressure is comparatively modest. After correcting for the solar dynamo dependencies in intensity and distribution, the total current intensity increases with solar wind dynamic pressure by 0.4 MA/nPa for southward IMF. Normalizing the Birkeland current densities to both the median solar wind electric field and dynamic pressure effects, we find no significant dependence of the Birkeland currents on solar wind Alfvén Mach number.


2011 ◽  
Vol 29 (10) ◽  
pp. 1809-1826 ◽  
Author(s):  
H. Korth ◽  
L. Rastätter ◽  
B. J. Anderson ◽  
A. J. Ridley

Abstract. Spatial distributions of the large-scale Birkeland currents derived from magnetic field data acquired by the constellation of Iridium Communications satellites have been compared with global-magnetosphere magneto-hydrodynamic (MHD) simulations. The Iridium data, spanning the interval from February 1999 to December 2007, were first sorted into 45°-wide bins of the interplanetary magnetic field (IMF) clock angle, and the dependencies of the Birkeland currents on solar wind electric field magnitude, Eyz, ram pressure, psw, and Alfvén Mach number, MA, were then examined within each bin. The simulations have been conducted at the publicly-accessible Community Coordinated Modeling Center using the University of Michigan Space Weather modeling Framework, which features a global magnetosphere model coupled to the Rice Convection Model. In excess of 120 simulations with steady-state conditions were executed to yield the dependencies of the Birkeland currents on the solar wind and IMF parameters of the coupled model. Averaged over all IMF orientations, the simulation reproduces the Iridium statistical Birkeland current distributions with a two-dimensional correlation coefficient of about 0.8, and the total current agrees with the climatology averages to within 10%. The total current for individual events regularly exceeds those computed from statistical distributions by factors of ≥2, resulting in larger disparities between observations and simulations. The simulation results also qualitatively reflect the observed increases in total current with increasing Eyz and psw, but the model underestimates the rate of increase by up to 50%. The equatorward expansion and shift of the large-scale currents toward noon observed for increasing Eyz are also evident in the simulation current patterns. Consistent with the observations, the simulation does not show a significant dependence of the total current on MA.


Sign in / Sign up

Export Citation Format

Share Document