A poorly mixed mantle transition zone and its thermal state inferred from seismic waves

2021 ◽  
Author(s):  
Lauren Waszek ◽  
Benoit Tauzin ◽  
Nicholas C. Schmerr ◽  
Maxim D. Ballmer ◽  
Juan Carlos Afonso
Author(s):  
B. B. Shkursky

Theoretical modeling of regular olivine grains misorientations in mimetic paramorphoses after ringwoodite and wadsleyite, the formation of which during the ascension of matter from the Mantle Transition Zone is expected, has been carried out. The coordinates of the misorientation axes and the misorientation angles, characterizing 10 operations of alignment in the pair intergrowths of olivine grains, eight of which are twins, are calculated. Possible conditions for the formation of mimetic paramorphoses predicted here, and the chances of their persistence are discussed. The calculated orientations are compared with the known twinning laws of olivine.


Nature ◽  
2021 ◽  
Vol 589 (7843) ◽  
pp. 562-566
Author(s):  
Matthew R. Agius ◽  
Catherine A. Rychert ◽  
Nicholas Harmon ◽  
Saikiran Tharimena ◽  
J.-Michael Kendall

2021 ◽  
Author(s):  
Benoit Tauzin ◽  
Lauren Waszek ◽  
Jun Yan ◽  
Maxim Ballmer ◽  
Nick Schmerr ◽  
...  

<p>Convective stirring of chemical heterogeneities introduced through oceanic plate subduction results in the marble cake model of mantle composition. A convenient description invokes a chemically unequilibrated mixture of oceanic basaltic crust and harzburgitic lithosphere. Such a composition is required to explain joint observations of shear and compressional waves reflected underneath transition zone (TZ) discontinuities<sup>1</sup>. The formation of basaltic reservoirs at TZ depth results from complex interaction between phase-change induced chemical segregation, subducted slab downward entrainment, and plume upward advection. However, the dominant mechanism to create and maintain the reservoirs is debated, because both present-day reservoir location and the amount of basalt in these reservoirs are unconstrained. Here, Bayesian inversion of SS- and PP-precursors reflection data indicates that the TZ comprises a global average basalt fraction f = 0.32 ± 0.11. We find the most enriched basaltic reservoirs (f = 0.5-0.6) are associated with recent subduction in the circum-Pacific region. We investigate the efficiency of plate subduction to maintain such reservoirs using global-scale thermochemical  convection models<sup>2</sup>.</p><p>[1] Waszek, L., Tauzin, B., Schmerr, N.C., Ballmer, M., & Afonso, J.C. (in review). A poorly mixed mantle and its thermal state inferred from seismic waves.</p><p>[2] Yan, J., Ballmer, M. D., & Tackley, P. J. (2020). The evolution and distribution of recycled oceanic crust in the Earth's mantle: Insight from geodynamic models. <em>Earth and Planetary Science Letters</em>, <em>537</em>, 116171.</p>


Sign in / Sign up

Export Citation Format

Share Document