scholarly journals Electronic screening using a virtual Thomas–Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces

2021 ◽  
Author(s):  
Alexander Schlaich ◽  
Dongliang Jin ◽  
Lyderic Bocquet ◽  
Benoit Coasne
2020 ◽  
Author(s):  
Alexander Schlaich ◽  
Dongliang Jin ◽  
Lyderic Bocquet ◽  
Benoit Coasne

Abstract Of particular relevance to energy storage, electrochemistry and catalysis, ionic and dipolar liquids display a wealth of unexpected fundamental behaviors – in particular in confinement. Beyond now well-documented adsorption, overscreening and crowding effects1,2,3, recent experiments have highlighted novel phenomena such as unconventional screening4 and the impact of the electronic nature – metallic versus insulating – of the confining surface on wetting/phase transitions5,6. Such behaviors, which challenge existing theoretical and numerical modeling frameworks, point to the need for new powerful tools to embrace the properties of confined ionic/dipolar liquids. Here, we introduce a novel atom-scale approach which allows for a versatile description of electronic screening while capturing all molecular aspects inherent to molecular fluids in nanoconfined/interfacial environments. While state of the art molecular simulation strategies only consider perfect metal or insulator surfaces, we build on the Thomas-Fermi formalism for electronic screening to develop an effective approach that allows dealing with any imperfect metal between these asymptotes. The core of our approach is to describe electrostatic interactions within the metal through the behavior of a `virtual' Thomas-Fermi fluid of charged particles, whose Debye length sets the Thomas-Fermi screening length λ in the metal. This easy-to-implement molecular method captures the electrostatic interaction decay upon varying λ from insulator to perfect metal conditions, while describing very accurately the capacitance behavior – and hence the electrochemical properties – of the metallic confining medium. By applying this strategy to a nanoconfined ionic liquid, we demonstrate an unprecedented wetting transition upon switching the confining medium from insulating to metallic. This novel approach provides a powerful framework to predict the unsual behavior of ionic liquids, in particular inside nanoporous metallic structures, with direct applications for energy storage and electrochemistry.


2009 ◽  
pp. 888-889
Author(s):  
Tsutomu Yagi ◽  
Shinya Sasaki ◽  
Hiroki Mano ◽  
Koji Miyake ◽  
Miki Nakano ◽  
...  

2006 ◽  
Vol 74 (3) ◽  
pp. 519-525 ◽  
Author(s):  
D Ninno ◽  
F Trani ◽  
G Cantele ◽  
K. J Hameeuw ◽  
G Iadonisi ◽  
...  

2017 ◽  
Vol 199 ◽  
pp. 129-158 ◽  
Author(s):  
V. Kaiser ◽  
J. Comtet ◽  
A. Niguès ◽  
A. Siria ◽  
B. Coasne ◽  
...  

The electrostatic interaction between two charged particles is strongly modified in the vicinity of a metal. This situation is usually accounted for by the celebrated image charges approach, which was further extended to account for the electronic screening properties of the metal at the level of the Thomas–Fermi description. In this paper we build upon a previous approach [M. A. Vorotyntsev and A. A. Kornyshev, Zh. Eksp. Teor. Fiz., 1980, 78(3), 1008–1019] and successive works to calculate the 1-body and 2-body electrostatic energy of ions near a metal in terms of the Thomas–Fermi screening length. We propose workable approximations suitable for molecular simulations of ionic systems close to metallic walls. Furthermore, we use this framework to calculate analytically the electrostatic contribution to the surface energy of a one dimensional crystal at a metallic wall and its dependence on the Thomas–Fermi screening length. These calculations provide a simple interpretation for the surface energy in terms of image charges, which allows for an estimation of the interfacial properties in more complex situations of a disordered ionic liquid close to a metal surface. The counter-intuitive outcome is that electronic screening, as characterized by a molecular Thomas–Fermi length lTF, profoundly affects the wetting of ionic systems close to a metal, in line with the recent experimental observation of capillary freezing of ionic liquids in metallic confinement.


1989 ◽  
Vol 50 (C7) ◽  
pp. C7-267-C7-282
Author(s):  
I. K. ROBINSON

Sign in / Sign up

Export Citation Format

Share Document