tribochemical reaction
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 24)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Vol 12 (2) ◽  
pp. 599
Author(s):  
Jian Wang ◽  
Tianxia Liu

The homemade soot capture device was used to burn Fischer-Tropsch synthetic diesel (F-T diesel) in order to simulate the combustion of F-T diesel in the engine and collect its soot (F-T DS, FS). The zinc-iron hydrotalcite (ZnFe-LDH) and the composite materials of FS and ZnFe-LDH (F-T DS/ZnFe-LDH, FS/ZnFe-LDH) were prepared by hydrothermal synthesis, and the similarities and differences in tribological characteristics of the above three lubricating materials such as 10# white oil (10# WO) lubricant additives were investigated. FS is an aggregation composed of amorphous carbon and graphite microcrystals. ZnFe-LDH is mainly composed of nanosheets, Zn, and Fe hydroxide particles, with a high degree of crystallization, while FS/ZnFe-LDH is a “sandwich layer” composed of nanosheets and soot particles. Because of the addition of cetyltrimethylammonium bromide and the grafting of a long carbon chain lipophilic group in the preparation process, FS/ZnFe-LDH has better anti-wear properties than the FS and ZnFe-LDH Effect. When FS/ZnFe-LDH is added at 0.2 wt.%, the average friction coefficient (AFC) and average wears scar diameter (AWSD) are at their lowest. Compared with pure 10# WO, the minimum values of AFC and AWSD have dropped by 36.84% and 22.58%, respectively. XPS analysis of the wear scar surface shows that when ZnFe-LDH and FS/ZnFe-LDH are used as lubricating additives of 10# WO, together with the organic matter in the white oil and the iron element in the friction pair, tribochemistry occurs under the combined action of the adsorption force and the tribochemical reaction, a friction protection film containing four elements of C, O, Fe, and Zn is formed on the surface of the wear scar, which effectively reduces the wear and reduces the friction coefficient.


Friction ◽  
2021 ◽  
Author(s):  
Zhiwen Zheng ◽  
Xiaolong Liu ◽  
Guowei Huang ◽  
Haijie Chen ◽  
Hongxiang Yu ◽  
...  

AbstractMacroscale superlubricity is a prospective strategy in modern tribology to dramatically reduce friction and wear of mechanical equipment; however, it is mainly studied for point-to-surface contact or special friction pairs in experiments. In this study, a robust macroscale superlubricity for point-to-point contact on a steel interface was achieved for the first time by using hydroxylated modified boron nitride nanosheets with proton-type ionic liquids (ILs) as additives in ethylene glycol aqueous (EGaq). The detailed superlubricity process and mechanism were revealed by theoretical calculations and segmented experiments. The results indicate that hydration originating from hydrated ions can significantly reduce the shear stress of EGaq, which plays an essential role in achieving superlubricity. Moreover, the IL induces a tribochemical reaction to form a friction-protective film. Hydroxylated boron nitride nanosheets (HO-BNNs) function as a polishing and self-repairing agent to disperse the contact stress between friction pairs. Superlubricity involves the change in lubrication state from boundary lubrication to mixed lubrication. This finding can remarkably extend the application of superlubricity for point-to-point contact on steel surfaces for engineering applications.


2021 ◽  
Vol 70 (1) ◽  
Author(s):  
Resham Rana ◽  
Robert Bavisotto ◽  
Kaiming Hou ◽  
Nicholas Hopper ◽  
Wilfred T. Tysoe

Friction ◽  
2021 ◽  
Author(s):  
Wahyu Wijanarko ◽  
Hamid Khanmohammadi ◽  
Nuria Espallargas

AbstractIonic liquids have been widely discussed as potential lubricants, however, their properties make them also very good potential candidates as lubricant additives (e.g., friction modifiers and anti-wear). In this work, the tribological study of two ionic liquids (tributylmethylphosphonium dimethylphosphate (PP), and 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate (BMP)) as lubricant additives has been performed on stainless steel (AISI 316L) exposed to polar (water-glycol) and non-polar (polyalphaolefin) based lubricants under boundary lubricating conditions. The performance of these ionic liquids as lubricant additives has been compared to a classical organic friction modifier (dodecanoic acid (C12)). The water-glycol lubricant formulated with the two ionic liquids showed friction values higher than the same base lubricant formulated with dodecanoic acid, however, opposite results were observed for polyalphaolefin (PAO). A detailed surface chemical analysis using X-ray photoelectron spectroscopy (XPS) revealed differences in the passive/tribofilm thickness and chemical composition of the stainless steel surface tested in all lubricants. In the case of the polar lubricant additivated with ionic liquids, the tribochemical reaction accompanied by a tribocorrosion process led to the formation of an unstable passive/tribofilm resulting in high friction and wear. However, in the absence of tribocorrosion process (polyalphaolefin base lubricant), the tribochemical reaction led to the formation of a stable passive/tribofilm resulting in low friction and wear. A detailed surface and subsurface investigation of the microstructure using scanning electron microscopy equipped with a focused ion beam (SEM-FIB) showed that high wear rates resulted in thicker recrystallization region under the wear track surface. Among all lubricant additives tested in this work, BMP in non-polar lubricant media showed the best tribological performance.


2021 ◽  
Vol 69 (4) ◽  
Author(s):  
J. Ren ◽  
K. L. Gong ◽  
G. Q. Zhao ◽  
X. H. Wu ◽  
X. B. Wang

AbstractIn this article, Lewis acid–base complex of lithium 12-hydroxystearate (LHS) with diboron compound is formed by the introduction of bis(pinacolato)diboron (B2Pin2) into lithium grease. The interaction between Lewis acid B2Pin2 and Lewis base RCO2− of LHS is characterized by various techniques. Moreover, the rheological and tribological behaviors of the base grease are evaluated at low and moderate temperature. The results indicate that the addition of B2Pin2 can noticeably enhance the rheological property of the base grease because the formation of Lewis acid–base complex is beneficial for improving the soap fiber structure strength, and B2Pin2 could also help reduce the friction and wear of the grease during the sliding process, which likely owing to the boundary lubrication film generated by B2Pin2 adsorption on the rubbing surface and tribochemical reaction between borate esters and steel surfaces. The improvement of mechanical stability and tribological properties is beneficial to increasing the grease service life. Graphical Abstract


2021 ◽  
pp. 107302
Author(s):  
Yuzhen Liu ◽  
Jae-Ho Han ◽  
Teng Wang ◽  
Youn-Hoo Hwang ◽  
Shusheng Xu ◽  
...  

2021 ◽  
Vol 7 (4) ◽  
Author(s):  
Mohamad Taufiqurrakhman ◽  
Anne Neville ◽  
Michael G. Bryant

AbstractThe formation of tribochemical reaction layers, better known as tribofilms, on cobalt-chromium-molybdenum (CoCrMo) alloys commonly used in orthopaedic applications has been hypothesized to reduce degradation owing to wear and corrosion. However, the mechanisms and pathways influencing tribofilm formation remain largely unknown. This study aims to develop a clearer understanding of the role of protein structures and its concentration on tribocorrosion and surface tribofilms formed on CoCrMo alloys during boundary regime sliding. A reciprocating tribometer with a three-electrode electrochemical cell was employed to simulate and monitor the tribocorrosion of CoCrMo in situ. As-received Foetal Bovine Serum (as-FBS) and pre-heated FBS at 70 °C for 1 h (de-FBS) were diluted with saline (0.9% NaCl) at different concentrations (25% and 75% v/v) and utilized as electrolytes during the tribocorrosion tests. The result shows that the denatured protein structure in electrolyte tends to reduce the volume losses due to wear and corrosion on the CoCrMo samples with an appreciation of the protein tribofilms. On the other hand, an increased protein concentration increased the total volume loss due to corrosive processes. A novel finding revealed in this study is that the tribocorrosion mechanism of the CoCrMo surface is dependent on the protein structure, concentration and sliding duration due to the change in surface condition.


2021 ◽  
pp. 107289
Author(s):  
Hongxiang Yu ◽  
Zhiwen Zheng ◽  
Haijie Chen ◽  
Dan Qiao ◽  
Dapeng Feng ◽  
...  

Friction ◽  
2021 ◽  
Author(s):  
Qianzhi Wang ◽  
Xuxin Jin ◽  
Fei Zhou

AbstractTo compare the merits of Ni and Cu, the mechanical and tribological properties of CrBN coatings modified by Ni or Cu incorporation were studied. The results demonstrated that the CrBN-Cu coatings presented a lower friction coefficient than CrBN and CrBN-Ni coatings owing to the improved lubrication effect of the CuO layer originating from the tribochemical reaction. However, the hardness decline due to Cu incorporation was much greater than that of Ni incorporation. Thus, the CrBN-Cu coatings exhibited a higher wear rate than the CrBN coating. In contrast, the plastic deformation enhancement induced by Ni incorporation exceeded the hardness decline. Therefore, the wear of CrBN-Ni coatings partially turned to plastic deformation to present a lower wear rate than that of the CrBN coating.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhimin Cao ◽  
Wenjun Zong ◽  
Junjie Zhang ◽  
Chunlei He ◽  
Jiaohu Huang ◽  
...  

Purpose This paper aims to reveal the tribochemical reaction mechanism on the nano-cutting interface between HMX crystal and diamond tool. Design/methodology/approach Molecular dynamics simulation of HMX crystal nano-cutting by the reactive force field is carried out in this paper. The affinity of activated atoms and friction damage at the different interface have been well identified by comparing two cutting systems with diamond tool or indenter. The analyses of reaction kinetics, decomposition products and reaction pathways are performed to reveal the underlying atomistic origins of tribocatalytic reaction on the nano-cutting interface. Findings The HMX crystals only undergo damage and removal in the indenter cutting, while they appear to accelerate thermal decomposition in the diamond cutting. the C-O affinity is proved to be the intrinsic reason of the tribocatalytic reaction of the HMX-diamond cutting system. The reaction activation energy of the HMX crystals in the diamond cutting system is lower, resulting in a rapid increase in the decomposition degree. The free O atoms can induce the asymmetric ring-opening mode and change the decomposition pathways, which is the underlying atomistic origins of the thermal stability of the HMX-diamond cutting system. Originality/value This paper describes a method for analyzing the tribochemical behavior of HMX and diamond, which is beneficial to study the thermal stability in the nano-cutting of HMX.


Sign in / Sign up

Export Citation Format

Share Document