scholarly journals A multi-scale flow model for production performance analysis in shale gas reservoirs with fractal geometry

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Lei Wang ◽  
Zhenzhen Dong ◽  
Xiang Li ◽  
Zunyi Xia
2019 ◽  
Vol 22 (01) ◽  
pp. 238-252 ◽  
Author(s):  
Minglu Wu ◽  
Mingcai Ding ◽  
Jun Yao ◽  
Chenfeng Li ◽  
Zhaoqin Huang ◽  
...  

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Haibo Wang ◽  
Tong Zhou ◽  
Fengxia Li

Abstract Shale gas reservoirs have gradually become the main source for oil and gas production. The automatic optimization technology of complex fracture network in fractured horizontal wells is the key technology to realize the efficient development of shale gas reservoirs. In this paper, based on the flow model of shale gas reservoirs, the porosity/permeability of the matrix system and natural fracture system is characterized. The fracture network morphology is finely characterized by the fracture network expansion calculation method, and the flow model was proposed and solved. On this basis, the influence of matrix permeability, matrix porosity, fracture permeability, fracture porosity, and fracture length on the production of shale gas reservoirs is studied. The optimal design of fracture length and fracture location was carried, and the automatic optimization method of complex fracture network parameters based on simultaneous perturbation stochastic approximation (SPSA) was proposed. The method was applied in a shale gas reservoir, and the results showed that the proposed automatic optimization method of the complex fracture network in shale gas reservoirs can automatically optimize the parameters such as fracture location and fracture length and obtain the optimal fracture network distribution matching with geological conditions.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2765
Author(s):  
Prinisha Manda ◽  
Diakanua Nkazi

The development of prediction tools for production performance and the lifespan of shale gas reservoirs has been a focus for petroleum engineers. Several decline curve models have been developed and compared with data from shale gas production. To accurately forecast the estimated ultimate recovery for shale gas reservoirs, consistent and accurate decline curve modelling is required. In this paper, the current decline curve models are evaluated using the goodness of fit as a measure of accuracy with field data. The evaluation found that there are advantages in using the current DCA models; however, they also have limitations associated with them that have to be addressed. Based on the accuracy assessment conducted on the different models, it appears that the Stretched Exponential Decline Model (SEDM) and Logistic Growth Model (LGM), followed by the Extended Exponential Decline Model (EEDM), the Power Law Exponential Model (PLE), the Doung’s Model, and lastly, the Arps Hyperbolic Decline Model, provide the best fit with production data.


Sign in / Sign up

Export Citation Format

Share Document