scholarly journals The Combined Strategy for iron uptake is not exclusive to domesticated rice (Oryza sativa)

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andriele Wairich ◽  
Ben Hur Neves de Oliveira ◽  
Ezequiel Barth Arend ◽  
Guilherme Leitão Duarte ◽  
Lucas Roani Ponte ◽  
...  

Abstract Iron (Fe) is an essential micronutrient that is frequently inaccessible to plants. Rice (Oryza sativa L.) plants employ the Combined Strategy for Fe uptake, which is composed by all features of Strategy II, common to all Poaceae species, and some features of Strategy I, common to non-Poaceae species. To understand the evolution of Fe uptake mechanisms, we analyzed the root transcriptomic response to Fe deficiency in O. sativa and its wild progenitor O. rufipogon. We identified 622 and 2,017 differentially expressed genes in O. sativa and O. rufipogon, respectively. Among the genes up-regulated in both species, we found Fe transporters associated with Strategy I, such as IRT1, IRT2 and NRAMP1; and genes associated with Strategy II, such as YSL15 and IRO2. In order to evaluate the conservation of these Strategies among other Poaceae, we identified the orthologs of these genes in nine species from the Oryza genus, maize and sorghum, and evaluated their expression profile in response to low Fe condition. Our results indicate that the Combined Strategy is not specific to O. sativa as previously proposed, but also present in species of the Oryza genus closely related to domesticated rice, and originated around the same time the AA genome lineage within Oryza diversified. Therefore, adaptation to Fe2+ acquisition via IRT1 in flooded soils precedes O. sativa domestication.

2014 ◽  
Vol 85 ◽  
pp. 21-30 ◽  
Author(s):  
Margarida P. Pereira ◽  
Carla Santos ◽  
Ana Gomes ◽  
Marta W. Vasconcelos

2020 ◽  
Vol 11 ◽  
Author(s):  
Robert Sutak ◽  
Jean-Michel Camadro ◽  
Emmanuel Lesuisse

Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 398
Author(s):  
Daiki Toyomoto ◽  
Masato Uemura ◽  
Satoru Taura ◽  
Tadashi Sato ◽  
Robert Henry ◽  
...  

Wild rice relatives having the same AA genome as domesticated rice (Oryza sativa) comprise the primary gene pool for rice genetic improvement. Among them, O. meridionalis and O. rufipogon are found in the northern part of Australia. Three Australian wild rice strains, Jpn1 (O. rufipogon), Jpn2, and W1297 (O. meridionalis), and one cultivated rice cultivar Taichung 65 (T65) were used in this study. A recurrent backcrossing strategy was adopted to produce chromosomal segment substitution lines (CSSLs) carrying chromosomal segments from wild relatives and used for trait evaluation and genetic analysis. The segregation of the DNA marker RM136 locus on chromosome 6 was found to be highly distorted, and a recessive lethal gene causing abortion at the seed developmental stage was shown to be located between two DNA markers, KGC6_10.09 and KGC6_22.19 on chromosome 6 of W1297. We name this gene as SEED DEVELOPMENT 1 (gene symbol: SDV1). O. sativa is thought to share the functional dominant allele Sdv1-s (s for sativa), and O. meridionalis is thought to share the recessive abortive allele sdv1-m (m for meridionalis). Though carrying the sdv1-m allele, the O. meridionalis accessions can self-fertilize and bear seeds. We speculate that the SDV1 gene may have been duplicated before the divergence between O. meridionalis and the other AA genome Oryza species, and that O. meridionalis has lost the function of the SDV1 gene and has kept the function of another putative gene named SDV2.


1993 ◽  
Vol 12 (4) ◽  
pp. 325-348 ◽  
Author(s):  
Karl G. Wooldridge ◽  
Peter H. Williams

2013 ◽  
Vol 13 (5) ◽  
pp. 707-716 ◽  
Author(s):  
Andrew B Kelson ◽  
Maia Carnevali ◽  
Vu Truong-Le

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vidya Kaipanchery ◽  
Anamika Sharma ◽  
Fernando Albericio ◽  
Beatriz G. de la Torre

AbstractWe have studied the diversity and specificity of interactions of amphibactin produced by Vibrio genus bacterium (Vibrio sp. HC0601C5) with iron and various metal ions in + 3 oxidation state in an octahedral (Oh) environment. To survive in the iron-deficient environment of their host, pathogenic bacteria have devised various efficient iron acquisition strategies. One such strategy involves the production of low molecular weight peptides called siderophores, which have a strong affinity and specificity to chelate Fe3+ and can thus facilitate uptake of this metal in order to ensure iron requirements. The Fe uptake by amphibactin and the release of iron inside the cell have been studied. Comparison of the interaction of different transition metal ions (M3+) with amphibactin has been studied and it reveals that Co and Ga form stable complexes with this siderophore. The competition of Co and Ga with Fe impedes iron uptake by bacteria, thereby preventing infection.


2018 ◽  
Vol 13 (4) ◽  
pp. e1161877 ◽  
Author(s):  
Suzhen Li ◽  
Xiaojin Zhou ◽  
Jingtang Chen ◽  
Rumei Chen

Sign in / Sign up

Export Citation Format

Share Document