scholarly journals Effects of Biochar and Straw Application on the Physicochemical and Biological Properties of Paddy Soils in Northeast China

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yu Zheng ◽  
Xiaori Han ◽  
Yuying Li ◽  
Jinfeng Yang ◽  
Na Li ◽  
...  

Abstract Applying biochar to soil has been proposed as a strategy to enhance soil quality and crop productivity. To further evaluate the influence of biochar and straw application on soil fertility and crop yield, a five-year fixed site field experiment was conducted in a paddy field in Northeast China. The experimental design included six treatments: control (CK), biochar (C), straw (S), chemical fertilizers (NPK), biochar with chemical fertilizer (CNPK) and straw with chemical fertilizer (SNPK). The results showed that compared with the NPK treatment, CNPK and SNPK significantly increased soil total porosity, soil air permeability coefficient, soil organic carbon (SOC), C/N ratio, soil microbial biomass carbon (SMBC)‚ soil microbial biomass nitrogen (SMBN), invertase activity and rice yield. Furthermore, amendment of biochar had a better effect on SOC, C/N ratio, SMBC, and SMBN than that of straw. In addition, SMBC, SOC, and total nitrogen (TN) had significant correlations with soil enzyme activities. Therefore, amendment of biochar with chemical fertilizer is an effective measure to improve rice production and soil quality in the northeast of China.

2011 ◽  
Vol 149 (4) ◽  
pp. 497-505 ◽  
Author(s):  
W. KAIYONG ◽  
F. HUA ◽  
T. RANAB ◽  
M. A. HANJRAC ◽  
D. BO ◽  
...  

SUMMARYCotton is the dominant crop in the northern Xinjiang oasis of China; it accounts for 0·78 of the total planting area and represents a major contribution to economic development. The objective of the present study is to determine how cotton plantation age affected chemical and microbiological properties of the soil. The time substitution method was used on plantation farmlands, reclaimed from uncultivated land 0, 5, 10, 15 and 20 years ago. A total of 250 soil samples, at depths of 0–200, 200–400, 400–600, 600–800 and 800–1000 mm, were collected from cotton fields in 10 farms of each age category. There were significant differences in soil organic carbon (SOC), total soil nitrogen (TSN), soil available nitrogen (SAN), soil microbial biomass carbon (SMBC) and soil microbial biomass nitrogen (SMBN). There were also differences in the activities of cellulase, invertase and urease between soil layers and plantation ages, and these were most evident in the 200–400 mm layer. The cumulative rates of SOC and SMBC in the 0–1000 mm soil layer at the 5-, 10-, 15- and 20-year sites were 0·89, 0·99, 1·01 and 0·92 mg/kg/yr and 16, 16, 16 and 15 mg/kg/yr, respectively, compared to that at the control site (0 year). The cumulative amounts of SOC and SMBC increased gradually and then decreased, reaching a maximum at plantation ages of 13·1 years and 11·1 years, respectively. This suggests that incorporation of post-harvest cotton residues could be used as an effective measure to improve SOC in farmland of Xinjiang Oasis, and may be recommended for adoption in cotton growing in semi-arid oasis agriculture.


2016 ◽  
Vol 8 (2) ◽  
pp. 1126-1132 ◽  
Author(s):  
Sanjay Arora ◽  
Divya Sahni

In modern agriculture, chemical pesticides are frequently used in agricultural fields to increase crop production. Besides combating insect pests, these insecticides also affect the activity and population of beneficial soil microbial communities. Chemical pesticides upset the activities of soil microbes and thus may affect the nutritional quality of soils. This results in serious ecological consequences. Soil microbes had different response to different pesticides. Soil microbial biomass that plays an important role in the soil ecosystem where they have crucial role in nutrient cycling. It has been reported that field application of glyphosate increased microbial biomass carbon by 17% and microbial biomass nitrogen by 76% in nine soils at 14 days after treatment. The soil microbial biomass C increased significantly upto 30 days in chlorpyrifos as well as cartap hydrochloride treated soil, but thereafter decreased progressively with time. Soil nematodes, earthworms and protozoa are affected by field application rates of the fungicide fenpropimorph and other herbicides. Thus, there is need to assess the effect of indiscriminate use of pesticides on soil microorganisms, affecting microbial activity and soil fertility.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Di Liu ◽  
Zheli Ding ◽  
Esmat F. Ali ◽  
Ahmed M. S. Kheir ◽  
Mamdouh A. Eissa ◽  
...  

AbstractSoil amendments may increase the slate tolerance of plants consequently; it may increase the opportunity of using saline water in agricultural production. In the present pot trial, the effects of biochar (BIC) and compost (COM) on roselle (Hibiscus sabdariffa L.) irrigated with saline water (EC = 7.50 dS m−1) was studied. Roselle plants were amended with biochar (BIC1 and BIC2) or compost (COM1 and COM2) at rates of 1 and 2% (w/w), as well as by a mixture of the two amendments (BIC1+). The experiment included a control soil without any amendments. Biochar and compost significantly enhanced the soil quality and nutrients availability under saline irrigation. Compost and biochar improved the degree of soil aggregation, total soil porosity and soil microbial biomass. BIC1 + COM1 increased the soil microbial biomass carbon and nitrogen over the individual application of each amendments and control soil. BIC1 + COM1 increased the activity of dehydrogenase and phosphatase enzymes. Growth of roselle plants including: plant height, shoot fresh and dry weight, and chlorophyll were significantly responded to the added amendments. The maximum sepal’s yield was achieved from the combined application of compost and biochar. All the investigated treatments caused remarkable increases in the total flavonol and anthocyanin. BIC1 + COM1 increased the total anthocyanin and flavonol by 29 and 17% above the control. Despite the notable improvement in soil and roselle quality as a result of the single addition of compost or biochar, there is a clear superiority due to mixing the two amendments. It can be concluded that mixing of biochar and compost is recommended for roselle plants irrigated with saline water.


Sign in / Sign up

Export Citation Format

Share Document