scholarly journals Effect of biochar addition on leaf-litter decomposition at soil surface during three years in a warm-temperate secondary deciduous forest, Japan

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yukiya Minamino ◽  
Nobuhide Fujitake ◽  
Takeshi Suzuki ◽  
Shinpei Yoshitake ◽  
Hiroshi Koizumi ◽  
...  

AbstractThe addition of biochar to the forest floor should facilitate efficient carbon sequestration. However, little is known about how biochar addition effects litter decomposition, which is related to carbon and nutrient dynamics in forest ecosystems. This study evaluated the effect of biochar addition on leaf litter decomposition in a forest ecosystem. To examine whether leaf litter decomposition was stimulated above and below biochar, litterbag experiments were carried out for about 3 years in a field site where biochar was added at the rate of 0, 5 and 10 t ha−¹ (C0, C5 and C10 plots) to the forest floor in a temperate oak forest, Japan. Biochar addition at C10 significantly enhanced litter decomposition below biochar for 2 years after treatment and above biochar for 1 year after treatment. Litter water content in biochar plots tended to increase under dry conditions. Biochar addition enhanced litter decomposition because of increased microbial activity with increased moisture content and accelerated the decomposition progress rather than changing the decomposition pattern. However, the carbon emission through changing leaf litter decomposition was small when compared with the carbon addition by biochar, indicating that biochar could be an effective material for carbon sequestration in forest ecosystems.

Oikos ◽  
2005 ◽  
Vol 110 (1) ◽  
pp. 133-145 ◽  
Author(s):  
Jennifer A. Schweitzer ◽  
Joseph K. Bailey ◽  
Stephen C. Hart ◽  
Gina M. Wimp ◽  
Samantha K. Chapman ◽  
...  

2011 ◽  
Vol 27 (2) ◽  
pp. 205-210 ◽  
Author(s):  
Krista A. Capps ◽  
Manuel A. S. Graça ◽  
Andrea C. Encalada ◽  
Alexander S. Flecker

Decomposition of leaf litter is an important process that releases energy and nutrients in both terrestrial and aquatic environments (Moore et al. 2004, Wallace et al. 1997); therefore, the physical, chemical and biological processes controlling leaf-litter decomposition rates can affect nutrient cycling and productivity in these systems (Cross et al. 2007, Wood et al. 2009). Several studies have shown that leaf decomposition is faster in aquatic than in terrestrial habitats due to relatively constant temperatures, continuous leaching and the physical breakdown of leaves by flowing water (Hutchens & Wallace 2002, Langhans & Tockner 2006, Langhans et al. 2008). Yet, comparatively few studies have examined these relationships in tropical systems with flooded forests. Flooding is a predominant feature of the upper Amazon Basin, but its occurrence and magnitude is complex and not strictly seasonal (Junk et al. 1989). To identify the dominant energy pathways and understand the nutrient dynamics of upper Amazon rain forests, it is imperative to investigate organic matter processing in the aquatic/terrestrial transition zones of these ecosystems.


2014 ◽  
Author(s):  
Lori D Bothwell ◽  
Paul C Selmants ◽  
Christian P Giardina ◽  
Creighton M. Litton

Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT) gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ~31 days for each 1 °C increase in MAT. Our estimate of the Q10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5 – 2.5) across a broad range of ecosystems. The percentage of leaf litter nitrogen (N) remaining after six months declined linearly with increasing MAT from ~ 88% of initial N at the coolest site to ~74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming.


2001 ◽  
Vol 65 (4) ◽  
pp. 1334-1347 ◽  
Author(s):  
Terrell T. Baker ◽  
B. Graeme Lockaby ◽  
William H. Conner ◽  
Calvin E. Meier ◽  
John A. Stanturf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document