scholarly journals Induction of specific adaptive immune responses by immunization with newly designed artificial glycosphingolipids

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tetsuya Okuda ◽  
Kayoko Shimizu ◽  
Satoshi Hasaba ◽  
Mutsuhiro Date

AbstractWe previously found that artificial glycosphingolipids (artGSLs) containing very-long-chain fatty acids behave as strong immunogens in mice and promote the production of antibodies recognizing the oligosaccharide portion of artGSLs as the epitope. Here, we report that the oligosaccharide structure of artGSLs influences these immunogenic properties. We evaluated the antibody-inducing activity of artGSLs with different oligosaccharide structures in mice and found strong IgG-inducing activity only with an artGSL containing a core-fucosylated tetraoligosaccharide (Manβ1,4GlcNAcβ1,4[Fucα1,6]GlcNAc). To characterize the immunogenic properties of this artGSL, we analyzed various derivatives and found that the non-reducing terminal mannose structure was critical for the antibody-inducing activity. These artGSLs also exhibited IgG-inducing activity dependent on co-administration of lipid A adjuvant, but no cytokine-inducing activity similar to α-galactosylceramide was detected. Furthermore, repetitive immunization with the artGSL promoted the production of antibodies against a core-fucosylated α-fetoprotein isoform (AFP-L3) known as a hepatocellular carcinoma–specific antigen. These results indicate that the newly designed artGSLs specifically induce adaptive immune responses and promote antibody production by B cells, which can be utilized to develop anti-glycoconjugate antibodies and cancer vaccines targeting tumor-associated carbohydrate antigens.

2015 ◽  
Vol 21 (10) ◽  
pp. 1223-1238 ◽  
Author(s):  
Lawrence Steinman

Ideal therapy for inflammatory disease in the nervous system would preserve normal immune function, while suppressing only the pathologic immune responses that damage tissue and allowing for repair. In principle, antigen-specific therapy would eradicate unwanted adaptive immune responses—antibody and T-cell mediated—while preserving the integrity of other adaptive responses to infectious agents and retaining the ability to fight malignancy. However, at this time, for multiple sclerosis (MS) we do not have compelling evidence that would support any particular dominant immune response to any specific antigen or even a limited group of antigens. In fact, there are adaptive immune responses to a wide swathe of proteins and lipids found on neurons and myelin in MS. Unless controlling a few of the known immune responses is sufficient, antigen-specific therapy in MS may not have enough of an impact to modulate clinical outcome. However, in other neuroinflammatory conditions, such as neuromyelitis optica, the adaptive immune response is highly focused. Trials of antigen-specific therapy for neuroinflammatory disease might first be tested in diseases with a more limited adaptive immune response like neuromyelitis optica. The likelihood of a significant success for this therapeutic strategy might then ensue.


Sign in / Sign up

Export Citation Format

Share Document