scholarly journals Routine free thyroxine reference intervals are suboptimal for monitoring children on thyroxine replacement therapy and target intervals need to be assay-specific

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Elizabeth Wheeler ◽  
Kay Weng Choy ◽  
Lit Kim Chin ◽  
Nilika Wijeratne ◽  
Alan McNeil ◽  
...  

AbstractCentral hypothyroidism is a condition where there is (qualitatively or quantitatively) TSH deficiency, leading to reduced thyroid hormone production. In such patients, serum TSH does not accurately reflect the adequacy of thyroxine replacement, as the log-linear relationship between thyrotropin (TSH) and free thyroxine (FT4) is lost. We aimed to prospectively determine the optimal physiological FT4 treatment range for children treated for primary hypothyroidism, based on their serum TSH concentrations. This information could be used to guide optimal therapy for all children on thyroxine replacement, including those with central hypothyroidism. In total, sixty children (median age: 11 years, range: 11 months to 18 years) were recruited over 21 months. They were prescribed a stable dose of thyroxine for at least 6–8 weeks prior to a thyroid function test that consisted of serum TSH, FT4 and free triiodothyronine (FT3) measurements. The serum sample for the thyroid function tests was collected before ingestion of the daily dose, i.e. the trough concentration, and measured using Beckman Coulter UniCel DxI 800 instrument, Siemens Advia Centaur, Roche Cobas, Abbott Architect, Ortho Clinical Diagnostics Vitros 5600 (Ortho-Clinical Diagnostics, Raritan, NJ) platforms. The FT4 and FT3 reference intervals showed significant inter-method difference. The lower limit of the FT4 reference intervals were generally shifted mildly higher when the TSH concentration of the children were restricted from 0.5–5.0 mIU/L to 0.5–2.5 mIU/L. By contrast, the upper limit of the FT3 and FT4 reference intervals were relatively stable for the different TSH concentrations. Assay-specific target ranges for optimal thyroxine therapy are required until FT4 assay standardisation is realised.

Author(s):  
Jayne A. Franklyn

Subclinical hypothyroidism is defined biochemically as the association of a raised serum thyroid-stimulating hormone (TSH) concentration with normal circulating concentrations of free thyroxine (T4) and free triiodothyronine (T3). The term subclinical hypothyroidism implies that patients should be asymptomatic, although symptoms are difficult to assess, especially in patients in whom thyroid function tests have been checked because of nonspecific complaints such as tiredness. An expert panel has recently classified individuals with subclinical hypothyroidism into two groups (1): (1) those with mildly elevated serum TSH (typically TSH in the range 4.5–10.0 mU/l) and (2) those with more marked TSH elevation (serum TSH >10.0 mU/l).


2010 ◽  
Vol 56 (6) ◽  
pp. 912-920 ◽  
Author(s):  
L. M. Thienpont ◽  
K. Van Uytfanghe ◽  
G. Beastall ◽  
J. D. Faix ◽  
T. Ieiri ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Salvatore Benvenga

Pharmacological interference on L-thyroxine (L-T4) therapy can be exerted at several levels, namely from the hypothalamus/pituitary through the intestine, where the absorption of exogenous L-T4 takes place. A number of medications interfere with L-T4 therapy, some of them also being the cause of hypothyroidism. The clinician should be aware that some medications simply affect thyroid function tests with no need of modifying the dose of L-T4 that the patient was taking prior to their prescription. Usually, the topic of pharmacological interference on L-T4 therapy addresses the patient with primary hypothyroidism, in whom periodic measurement of serum thyrotropin (TSH) is the biochemical target. However, this minireview also addresses the patient with central hypothyroidism, in whom the biochemical target is serum free thyroxine (FT4). This minireview also addresses two additional topics. One is the costs associated with frequent monitoring of the biochemical target when L-T4 is taken simultaneously with the interfering drug. The second topic is the issue of metabolic/cardiovascular complications associated with undertreated hypothyroidism.


1987 ◽  
Vol 116 (3) ◽  
pp. 418-424 ◽  
Author(s):  
K. Liewendahl ◽  
T. Helenius ◽  
B.-A. Lamberg ◽  
H. Mähönen ◽  
G. Wägar

Abstract. Free thyroxine (FT4) and free triiodothyronine (FT3) concentrations in serum were measured by direct equilibrium dialysis methods in patients receiving thyroxine replacement or suppression therapy. Four of 50 hypothyroid patients euthyroid on replacement therapy (mean thyroxine dose 120 μg/day) had supra-normal FT4 concentrations, whereas the FT3 concentrations were normal in all. Forty-one of 56 operated thyroid carcinoma patients on suppressive therapy (mean thyroxine dose 214 μg/day) had raised FT4 concentrations, whereas the FT3 concentration was elevated in only one patient. There was a large difference in mean FT4 values for hypothyroid and thyroid carcinoma patients (17.2 vs 29.5 pmol/l), whereas the difference in mean FT3 values was small (5.0 vs 6.1 pmol/l), suggesting a decreased peripheral conversion of T4 to T3 with increasing concentrations of FT4. Serum TSH concentrations, as determined by an immunoradiometric assay, varied from < 0.02 to 11.9 mU/l in treated hypothyroid patients; 21 patients (42%) had values outside the reference limits. As a single test, serum TSH is therefore not very useful for the assessment of adequate thyroxine dosage in patients with primary hypothyroidism. In thyroid carcinoma patients, the TSH concentrations were < 0.18 mU/l; 45 patients had values < 0.02 mU/l indicating sufficient suppression of TSH secretion in the majority of cases. On the basis of these results we recommend the combination of FT3 and TSH tests for monitoring thyroxine replacement and suppression therapy. FT4 appears less useful than FT3 for this purpose even if special reference values values were adopted for each patient group.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 45
Author(s):  
Fanwen Meng ◽  
Jacqueline Jonklaas ◽  
Melvin Khee-Shing Leow

Clinicians often encounter thyroid function tests (TFT) comprising serum/plasma free thyroxine (FT4) and thyroid stimulating hormone (TSH) measured using different assay platforms during the course of follow-up evaluations which complicates reliable comparison and interpretation of TFT changes. Although interconversion between concentration units is straightforward, the validity of interconversion of FT4/TSH values from one assay platform to another with different reference intervals remains questionable. This study aims to establish an accurate and reliable methodology of interconverting FT4 by any laboratory to an equivalent FT4 value scaled to a reference range of interest via linear transformation methods. As a proof-of-concept, FT4 was simultaneously assayed by direct analog immunoassay, tandem mass spectrometry and equilibrium dialysis. Both linear and piecewise linear transformations proved relatively accurate for FT4 inter-scale conversion. Linear transformation performs better when FT4 are converted from a more accurate to a less accurate assay platform. The converse is true, whereby piecewise linear transformation is superior to linear transformation when converting values from a less accurate method to a more robust assay platform. Such transformations can potentially apply to other biochemical analytes scale conversions, including TSH. This aids interpretation of TFT trends while monitoring the treatment of patients with thyroid disorders.


2012 ◽  
Vol 45 (13-14) ◽  
pp. 1114
Author(s):  
K. Mourabit Amari ◽  
L. Bondaz ◽  
J. Girouard ◽  
C. Gagnon ◽  
J. Weisnagel ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yonghong Sheng ◽  
Dongping Huang ◽  
Shun Liu ◽  
Xuefeng Guo ◽  
Jiehua Chen ◽  
...  

Ethnic differences in the level of thyroid hormones exist among individuals. The American Thyroid Association (ATA) recommends that an institution or region should establish a specific thyroid hormone reference value for each stage of pregnancy. To date, a limited number of studies have reported the level of thyroid hormones in Chinese minorities, and the exact relationship between BMI and thyroid function in pregnant women is ill. This study was performed to establish trimester-specific reference ranges of thyroid hormones in Zhuang ethnic pregnant women and explore the role of body mass index (BMI) on thyroid function. A total of 3324 Zhuang ethnic health pregnant women were recruited in this Zhuang population-based retrospective cross-sectional study. The values of thyroid stimulating hormone (TSH), free thyroxine (FT4), and free triiodothyronine (FT3) were determined by automatic chemiluminescence immunoassay analyzer. Multivariate linear regression and binary logistic regression were constructed to evaluate the influence of BMI on the thyroid function. The established reference intervals for the serum thyroid hormones in three trimesters were as follows: TSH, 0.02–3.28, 0.03–3.22, and 0.08-3.71 mIU/L; FT4, 10.57–19.76, 10.05–19.23, and 8.96–17.75 pmol/L; FT3, 3.51–5.64, 3.42–5.42, and 2.93–5.03 pmol/L. These values were markedly lower than those provided by the manufacturers for nonpregnant adults which can potentially result in 6.10% to 19.73% misclassification in Zhuang pregnant women. Moreover, BMI was positively correlated with isolated hypothyroxinemia (OR=1.081, 95% CI=1.007–1.161), while the correlation between the BMI and subclinical hypothyroidism was not statistically significant (OR=0.991, 95% CI=0.917–1.072). This is the first study focusing on the reference ranges of thyroid hormones in Guangxi Zhuang ethnic pregnant women, which will improve the care of them in the diagnosis and treatment. We also found that high BMI was positively associated with the risk of isolated hypothyroxinemia.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yingying Wang ◽  
Dandan He ◽  
Chaowei Fu ◽  
Xiaolian Dong ◽  
Feng Jiang ◽  
...  

BackgroundThe onset of puberty is influenced by thyroid function, and thyroid hormones (THs) fluctuate substantially during the period of pubertal development. However, it needs to be further clarified how THs change at specific puberty stages and how it influences pubertal development in girls. So far, longitudinal data from China are scarce.MethodsA cohort study was conducted among girls during puberty in iodine-sufficient regions of East China between 2017 to 2019. Serum thyroid stimulating hormone (TSH), free triiodothyronine (FT3), and free thyroxine (FT4) were determined for each participant. Thyroid homeostasis structure parameters (THSPs), including the ratio of FT4 to FT3 (FT4/FT3), Jostel’s TSH index (TSHI), and thyroid feedback quantile-based index (TFQI), were calculated. Puberty category scores (PCS), calculated based on the Puberty Development Scale (PDS), was used to assess the stage of puberty. Girls were grouped into three categories according to PCS changes (△PCS) and six categories according puberty stage (BPFP: pre-pubertal at both baseline and follow-up; BPFL: pre-pubertal at baseline and late-pubertal at follow-up, respectively; BPFT: pre-pubertal at baseline and post-pubertal at follow-up, respectively; BLFL: late-pubertal at both baseline and follow-up; BLFT: late-pubertal at baseline and post-pubertal at follow-up, respectively; BTFT: post-pubertal at both baseline and follow-up). Multiple linear regression analyses were used to evaluate the associations of THs changes with pubertal progress.ResultsThe levels of serum TSH and FT3 decreased while serum FT4 increased during the study period (P&lt;0.001). In multiple linear regression analyses, after adjustment for covariables, FT3 decreased by an additional 0.24 pmol/L (95% CI: -0.47 to -0.01) in the higher △PCS group than the lower △PCS group. Compared with the BLFL group, the BPFT group showed an additional decline in FT3 (β= -0.39 pmol/L, 95%CI: -0.73 to -0.04), the BTFT group showed a lower decline in TSH (β=0.50 mU/L, 95% CI: 0.21 to 0.80) and a lower decline in TSHI (β=0.24, 95%CI: 0.06 to 0.41), respectively. There was no association of △FT4 or △TFQI with △PCS or the puberty pattern.ConclusionsSerum TSH and FT3 decreased while serum FT4 increased among girls during puberty. Both the initial stage and the velocity of pubertal development were related to thyroid hormone fluctuations.


2018 ◽  
Vol 31 (10) ◽  
pp. 1113-1116 ◽  
Author(s):  
Michelle S. Jayasuriya ◽  
Kay W. Choy ◽  
Lit K. Chin ◽  
James Doery ◽  
Alice Stewart ◽  
...  

Abstract Background: Prompt intervention can prevent permanent adverse neurological effects caused by neonatal hypothyroidism. Thyroid function changes rapidly in the first few days of life but well-defined age-specific reference intervals (RIs) for thyroid-stimulating hormone (TSH), free thyroxine (FT4) and free tri-iodothyronine (FT3) are not available to aid interpretation. We developed hour-based RIs using data mining. Methods: All TSH, FT4 and FT3 results with date and time of collection from neonates aged <7 days during 2005–2015 were extracted from the Monash Pathology database. Neonates with more than one episode of testing or with known primary hypothyroidism, identified by treating physicians or from medical records, were excluded from the analysis. The date and time of birth were obtained from the medical records. Results: Of the 728 neonates qualifying for the study, 569 had time of birth available. All 569 had TSH, 415 had FT4 and 146 had FT3 results. For age ≤24 h, 25–48 h, 49–72 h, 73–96 h, 97–120 h, 121–144 h and 145–168 h of life, the TSH RIs (2.5th–97.5th) (mIU/L) were 4.1–40.2, 3.2–29.6, 2.6–17.3, 2.2–14.7, 1.8–14.2, 1.4–12.7 and 1.0–8.3, respectively; the FT4 RIs (mean ± 2 standard deviation [SD]) (pmol/L) were 15.3–43.6, 14.7–53.2, 16.5–45.5, 17.8–39.4, 15.3–32.1, 14.5–32.6 and 13.9–30.9, respectively; the FT3 RIs (mean±2 SD) (pmol/L) were 5.0–9.4, 4.1–9.1, 2.8–7.8, 2.9–7.8, 3.5–7.2, 3.4–8.0 and 3.8–7.9, respectively. Conclusions: TSH and FT4 were substantially high in the first 24 h after birth followed by a rapid decline over the subsequent 168 h. Use of hour-based RIs in newborns allows for more accurate identification of neonates who are at risk of hypothyroidism.


Sign in / Sign up

Export Citation Format

Share Document