scholarly journals Author Correction: Association of Cyclin Dependent Kinase 10 and Transcription Factor 2 during Human Corneal Epithelial Wound Healing in vitro model

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Meraj Zehra ◽  
Shamim Mushtaq ◽  
Syed Ghulam Musharraf ◽  
Rubina Ghani ◽  
Nikhat Ahmed
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Miguel Gonzalez-Andrades ◽  
Luis Alonso-Pastor ◽  
Jérôme Mauris ◽  
Andrea Cruzat ◽  
Claes H. Dohlman ◽  
...  

Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


2004 ◽  
Vol 12 (2) ◽  
pp. A26-A26
Author(s):  
F E Dhawahir ◽  
C Sheridan ◽  
D Kent ◽  
D Wong ◽  
I Grierson ◽  
...  

2006 ◽  
Vol 26 (12) ◽  
pp. 4758-4768 ◽  
Author(s):  
Jaya Rajaiya ◽  
Jamee C. Nixon ◽  
Neil Ayers ◽  
Zana P. Desgranges ◽  
Ananda L. Roy ◽  
...  

ABSTRACT Bright/ARID3a/Dril1, a member of the ARID family of transcription factors, is expressed in a highly regulated fashion in B lymphocytes, where it enhances immunoglobulin transcription three- to sixfold. Recent publications from our lab indicated that functional, but not kinase-inactive, Bruton's tyrosine kinase (Btk) is critical for Bright activity in an in vitro model system, yet Bright itself is not appreciably tyrosine phosphorylated. These data suggested that a third protein, and Btk substrate, must contribute to Bright-enhanced immunoglobulin transcription. The ubiquitously expressed transcription factor TFII-I was identified as a substrate for Btk several years ago. In this work, we show that TFII-I directly interacts with human Bright through amino acids in Bright's protein interaction domain and that specific tyrosine residues of TFII-I are essential for Bright-induced activity of an immunoglobulin reporter gene. Moreover, inhibition of TFII-I function in a B-cell line resulted in decreased heavy-chain transcript levels. These data suggest that Bright functions as a three-component protein complex in the immunoglobulin locus and tie together previous data indicating important roles for Btk and TFII-I in B lymphocytes.


2012 ◽  
Vol 44 (4) ◽  
pp. 458 ◽  
Author(s):  
AnilK Balapure ◽  
Jaya Dixit ◽  
Divya Lodha ◽  
Vishal Ranjan ◽  
Ramesh Sharma ◽  
...  

Biomaterials ◽  
2013 ◽  
Vol 34 (28) ◽  
pp. 6695-6705 ◽  
Author(s):  
Sarah Sundelacruz ◽  
Chunmei Li ◽  
Young Jun Choi ◽  
Michael Levin ◽  
David L. Kaplan

1993 ◽  
Vol 6 (2) ◽  
pp. 96-103 ◽  
Author(s):  
Steven S. Matsumoto ◽  
Michael E. Stern ◽  
Roger M. Oda ◽  
Corine R. Ghosn ◽  
Josephine W. Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document