Effect of Ofloxacin on Corneal Epithelial Wound Healing Evaluated by In Vitro and In Vivo Methods

1993 ◽  
Vol 6 (2) ◽  
pp. 96-103 ◽  
Author(s):  
Steven S. Matsumoto ◽  
Michael E. Stern ◽  
Roger M. Oda ◽  
Corine R. Ghosn ◽  
Josephine W. Cheng ◽  
...  
2006 ◽  
Vol 47 (5) ◽  
pp. 1862 ◽  
Author(s):  
Masanao Watanabe ◽  
Shoichi Kondo ◽  
Ken Mizuno ◽  
Wataru Yano ◽  
Hiroshi Nakao ◽  
...  

NanoImpact ◽  
2020 ◽  
Vol 17 ◽  
pp. 100198 ◽  
Author(s):  
Soohyun Kim ◽  
Brooke L. Gates ◽  
Brian C. Leonard ◽  
Megan M. Gragg ◽  
Kent E. Pinkerton ◽  
...  

2010 ◽  
Vol 51 (11) ◽  
pp. 5630 ◽  
Author(s):  
Ryuji Yoshioka ◽  
Atsushi Shiraishi ◽  
Takeshi Kobayashi ◽  
Shin-ichi Morita ◽  
Yasuhito Hayashi ◽  
...  

Small ◽  
2019 ◽  
Vol 15 (31) ◽  
pp. 1901907 ◽  
Author(s):  
Nanxin Liu ◽  
Xiaolin Zhang ◽  
Ni Li ◽  
Mi Zhou ◽  
Tianxu Zhang ◽  
...  

Small ◽  
2019 ◽  
Vol 15 (31) ◽  
pp. 1970162 ◽  
Author(s):  
Nanxin Liu ◽  
Xiaolin Zhang ◽  
Ni Li ◽  
Mi Zhou ◽  
Tianxu Zhang ◽  
...  

2020 ◽  
Vol 6 (23) ◽  
pp. eaba4376 ◽  
Author(s):  
Timothy S. Jayme ◽  
Gabriella Leung ◽  
Arthur Wang ◽  
Matthew L. Workentine ◽  
Sruthi Rajeev ◽  
...  

Murine alternatively activated macrophages can exert anti-inflammatory effects. We sought to determine if IL-4–treated human macrophages [i.e., hM(IL4)] would promote epithelial wound repair and can serve as a cell transfer treatment for inflammatory bowel disease (IBD). Blood monocytes from healthy volunteers and patients with active and inactive IBD were converted to hM(IL4)s. IL-4 treatment of blood-derived macrophages from healthy volunteers and patients with inactive IBD resulted in a characteristic CD206+CCL18+CD14low/− phenotype (RNA-seq revealed IL-4 affected expression of 996 genes). Conditioned media from freshly generated or cryopreserved hM(IL4)s promoted epithelial wound healing in part by TGF, and reduced cytokine-driven loss of epithelial barrier function in vitro. Systemic delivery of hM(IL4) to dinitrobenzene sulphonic acid (DNBS)–treated Rag1−/− mice significantly reduced disease. These findings from in vitro and in vivo analyses provide proof-of-concept support for the development of autologous M(IL4) transfer as a cellular immunotherapy for IBD.


1984 ◽  
Vol 102 (3) ◽  
pp. 455-456 ◽  
Author(s):  
T. Nishida ◽  
S. Nakagawa ◽  
C. Nishibayashi ◽  
H. Tanaka ◽  
R. Manabe

2019 ◽  
Vol 20 (7) ◽  
pp. 1655 ◽  
Author(s):  
Carlota Suárez-Barrio ◽  
Jaime Etxebarria ◽  
Raquel Hernáez-Moya ◽  
Marina del Val-Alonso ◽  
Maddalen Rodriguez-Astigarraga ◽  
...  

The aim of this study is to assess if an adhesive biopolymer, sodium hyaluronate (NaHA), has synergistic effects with s-PRGF (a serum derived from plasma rich in growth factors and a blood derivative that has already shown efficacy in corneal epithelial wound healing), to reduce time of healing or posology. In vitro proliferation and migration studies, both in human corneal epithelial (HCE) cells and in rabbit primary corneal epithelial (RPCE) cultures, were carried out. In addition, we performed studies of corneal wound healing in vivo in rabbits treated with s-PRGF, NaHA, or the combination of both. We performed immunohistochemistry techniques (CK3, CK15, Ki67, ß4 integrin, ZO-1, α-SMA) in rabbit corneas 7 and 30 days after a surgically induced epithelial defect. In vitro results show that the combination of NaHA and s-PRGF offers the worst proliferation rates in both HCE and RPCE cells. Addition of NaHA to s-PRGF diminishes the re-epithelializing capability of s-PRGF. In vivo, all treatments, given twice a day, showed equivalent efficacy in corneal epithelial healing. We conclude that the combined use of s-PRGF and HaNA as an adhesive biopolymer does not improve the efficacy of s-PRGF alone in the wound healing of corneal epithelial defects.


Sign in / Sign up

Export Citation Format

Share Document