scholarly journals Statins for the prevention of proliferative vitreoretinopathy: cellular responses in cultured cells and clinical statin concentrations in the vitreous

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yashavanthi Mysore ◽  
Eva M. del Amo ◽  
Sirpa Loukovaara ◽  
Marja Hagström ◽  
Arto Urtti ◽  
...  

AbstractProliferative vitreoretinopathy (PVR) with rhegmatogenous retinal detachment (RRD) is a complex inflammatory ocular disease. Statins are widely used cholesterol-lowering drugs with putative anti-inflammatory properties. In this study, we have explored their efficacy in controlling post-surgical PVR formation. Simvastatin (SIM), atorvastatin (ATV), or rosuvastatin (RSV) were added to cultures of human retinal pigment epithelial cells (ARPE-19) prior to exposure with the bacterial lipopolysaccharide (LPS), and the production of pro-inflammatory cytokines (IL-6, IL-8, MCP-1) was examined using an enzyme-linked immunosorbent assay. In addition, the concentrations of simvastatin, atorvastatin, rosuvastatin, and their metabolites were measured from the vitreal samples of 20 patients undergoing vitrectomy (16 of them receiving oral statin therapy) using an ultra-performance liquid chromatography-tandem mass spectrometer technique. All statins alleviated LPS-induced inflammation at 5 µM concentration in the ARPE-19 cell cultures. Statin levels in the vitreous samples ranged from 6 to 316 pg/mL (ca. 0.1–7 M−10). Vitreal statin concentrations were similar to the typical steady-state unbound statin concentrations in plasma, indicating that only the unbound drug distributes from the blood circulation into the vitreous. Pharmacokinetic simulations of the intravitreal delivery of statins indicate that the measured clinical statin concentrations could be maintained with existing drug delivery technologies for months. Our results suggest that intravitreal statin therapy may have the potential in alleviating the risk of post-surgical PVR.

2019 ◽  
pp. 112067211989596
Author(s):  
Stefan Kassumeh ◽  
Christian M Wertheimer ◽  
Andreas Ohlmann ◽  
Siegfried G Priglinger ◽  
Armin Wolf

Purpose: Light-induced damage to retinal pigment epithelium during pars plana vitrectomy remains a hot topic in ophthalmology. Improvements in technology led to a change of light sources, selective filters, and shorter light exposure time. Currently, there is no satisfying solution to the problem. The aim of the study was to investigate the cytoprotective effects of crocin and resveratrol on light-induced damage to primary human retinal pigment epithelial cells in vitro. Methods: Primary human retinal pigment epithelial cells were exposed to light analogous to the illumination during pars plana vitrectomy. To evaluate the cytoprotective effects and potential toxicity of resveratrol and crocin, human retinal pigment epithelial cells were incubated with varying concentrations of both before 3-[4,5-dimethylthiazol-2-yl] tetrazolium bromide (MTT) viability assay. Furthermore, glutathione levels were measured to investigate synergistic antioxidant potential. Apoptosis of human retinal pigment epithelial cells was determined by a nucleosome detection enzyme-linked immunosorbent assay. Results: Crocin and resveratrol improved cell viability in photodamaged human retinal pigment epithelial cells significantly from 40.65 ± 21.99% in illuminated human retinal pigment epithelial cells and reached a peak viability of 85.64 ± 11.37% in crocin and resveratrol pretreated cells (for all: p < 0.001). In line, the combination of the supplements increased glutathione levels significantly from 39.35 ± 21.96% to 80.74 ± 10.32% ( p = 0.017). No toxic effects were detected ( p > 0.99). However, no change in apoptosis rates could be observed following pretreatment with crocin and resveratrol ( p > 0.99). Conclusion: Crocin and trans-resveratrol revealed cytoprotective effects on human retinal pigment epithelial cells supporting both supplement’s development as potential perioperative treatments in light-induced retinal pigment epithelial damage.


Sign in / Sign up

Export Citation Format

Share Document