ultra performance liquid chromatography
Recently Published Documents


TOTAL DOCUMENTS

2764
(FIVE YEARS 944)

H-INDEX

76
(FIVE YEARS 10)

2022 ◽  
pp. 107815522110728
Author(s):  
Clémence Delafoy ◽  
Claudine Roussy ◽  
Anny-France Hudon ◽  
Ciprian Mihai Cirtiu ◽  
Nicolas Caron ◽  
...  

Introduction Occupational exposure to antineoplastic drugs can lead to long-term adverse effects on workers’ health. Environmental monitoring is conducted once a year, as part of a Canadian monitoring program. The objective was to describe contamination with 11 antineoplastic drugs measured on surfaces. Methods Six standardized sites in oncology pharmacy and six in outpatient clinic were sampled in each hospital. Samples were analyzed by ultra-performance liquid chromatography coupled with tandem mass spectrometry (non-platinum drugs) and by inductively coupled plasma mass spectrometry (platinum-based drugs). The limits of detection (in ng/cm2) were: 0.0006 for cyclophosphamide; 0.001 for docetaxel; 0.04 for 5-fluorouracil; 0.0004 for gemcitabine; 0.0007 for irinotecan; 0.0009 for methotrexate; 0.004 for paclitaxel, 0.009 for vinorelbine, 0.02 for doxorubicine, 0.0037 for etoposide and 0.004 for the platinum. Sub-analyses were done with a Kolmogorov-Smirnov test Results 122 Canadian hospitals participated. Cyclophosphamide (451/1412, 32% of positive samples, 90th percentile of concentration 0.0160 ng/cm2) and gemcitabine (320/1412, 23%, 0.0036 ng/cm2) were most frequently measured on surfaces. The surfaces most frequently contaminated with at least one drug were the front grille inside the biological safety cabinet (97/121, 80%) and the armrest of patient treatment chair (92/118, 78%).The distribution of cyclophosphamide concentration was higher for centers that prepared ≥ 5000 antineoplastic drug preparations/year (p < 0.0001). Conclusions This monitoring program allowed centers to benchmark their contamination with pragmatic contamination thresholds derived from the Canadian 90th percentiles. Problematic areas need corrective measures such as decontamination. The program helps to increase the workers’ awareness.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 184
Author(s):  
Hongying Cai ◽  
Zhiguo Wen ◽  
Xin Xu ◽  
Jiaxin Wang ◽  
Xuan Li ◽  
...  

Lactobacillus plantarum is considered a potential probiotic supplementation for treating obesity. However, the underlying molecular mechanism is poorly understood. Our previous study displayed that L. plantarum FRT4 alleviated obesity in mice fed a high-fat diet (HFD) through ameliorating the HFD-induced gut microbiota dysbiosis. To explore the roles of FRT4 in obesity prevention, in this study, we investigated changes in serum metabolomic phenotype by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) and analyzed the pathway of HFD-fed Kunming female mice orally administered with FRT4 for eight weeks. Using orthogonal partial least squares discriminant analysis (OPLS-DA), metabolite patterns with significant changes were observed. 55 metabolites including phosphatidylcholine, lysophophatidylcholine, sphingomyelin, serotonin, indole-3-methyl aceta, indole-3-carbinol, indole-5,6-quino, 11,12-DHET, prostaglandin B2, leukotriene B4, and 3-hydroxybenzoic acid were identified as potential biomarkers associated with obesity, which were mainly involving in glycerophospholipid metabolism, tryptophan metabolism, and arachidonic acid metabolism. Perturbations of 14 biomarkers could be regulated by FRT4 intervention. These metabolites may serve as valuable biomarkers to understand the mechanisms by which intake of diets containing FRT4 contributes to the treatment or prevention of obesity. Thus, FRT4 can be a promising dietary supplement for the prevention of HFD-induced obesity.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 410
Author(s):  
Leilson de Oliveira Ribeiro ◽  
Beatriz Pereira de Freitas ◽  
Carolline Margot Albanez Lorentino ◽  
Heloisa Freire Frota ◽  
André Luis Souza dos Santos ◽  
...  

Herein, the extraction of bioactive compounds from umbu fruit peel was optimized using thermal-assisted solid–liquid extraction. In parallel, antioxidant, antimicrobial, and inhibitory effects against α-amylase of optimized extract were also evaluated. The combination of operational conditions including the temperature (32–74 °C), ethanol concentration (13–97%), and solid/liquid ratio (1:10–1:60; w/v) was employed using a rotational central composite design for optimization. The extracts were evaluated for total phenolic compounds (TPC), total flavonoid compounds (TFC) and antioxidant capacity by ABTS•+, DPPH• and FRAP assays. The bioactive profile of the optimized extract was obtained by ultra-performance liquid chromatography coupled to quadrupole/time-of-flight mass spectrometry in electrospray ionization in both negative and positive modes. The statistically evaluated results showed that the optimal operational conditions for the recovery of bioactive compounds from umbu fruit peel included 74 °C, 37% ethanol, and a solid–liquid ratio of 1:38. Under these conditions, the obtained values were 1985 mg GAE/100 g, 1364 mg RE/100 g, 122 µmol TE/g, 174 µmol/TE g and 468 µmol Fe2+/g for TPC, TFC, ABTS•+, DPPH•, and FRAP assays, respectively. In addition, the optimized extract was effective against Gram-positive and Gram-negative bacteria (MBC ranged from 0.060 to 0.24 mg GAE/mL), as well as it was effective to inhibit α-amylase (IC50 value of 0.076 mg GAE/mL). The optimized extract showed to be mainly constituted by phenolic acids and flavonoids.


Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 33
Author(s):  
Kristina Kvrgić ◽  
Tina Lešić ◽  
Natalija Džafić ◽  
Jelka Pleadin

As filter feeders, bivalves and ascidians can accumulate contaminants present in the environment and pass them on to higher food chain levels as vectors. The consumption of bivalves contaminated with the potent neurotoxin domoic acid (DA) can cause amnesic shellfish poisoning in humans. The aim of this study was to determine seasonal differences in occurrence and accumulation of this phycotoxin in European oysters (Ostrea edulis Linnaeus, 1758) (n = 46), Queen scallops (Aequipecten opercularis Linnaeus, 1758) (n = 53), and edible ascidians of the Microcosmus spp. (n = 107), originating from the same harvesting area in the Northern Adriatic Sea. The quantification was performed using ultra-performance liquid chromatography–tandem mass spectrometry (LC-MS/MS) preceded by derivatization with dansyl chloride. DA was found in very low concentrations throughout the year, with a maximum value of 810 μg/kg in Queen scallops. This study reveals differences in the occurrence and accumulation of DA between Queen scallops and the other two investigated species (oysters and ascidians) and the highest concentrations during the colder part of the year. Even though DA was detected in all of them, Queen scallops showed higher DA accumulation compared to the other two (p < 0.001), hence representing a sentinel species suitable for the monitoring of DA level in seafood.


2022 ◽  
Author(s):  
Chengnan Guo ◽  
Yixi Xu ◽  
Yange Ma ◽  
Xin Xu ◽  
Fang Peng ◽  
...  

Although previous studies demonstrate that trehalose can help maintain glucose homeostasis in healthy humans, its role and joint effect with glutamate on diabetic retinopathy (DR) remain unclear. We aimed to comprehensively quantify the associations of trehalose and glutamate with DR. This study included 69 pairs of DR and matched type 2 diabetic (T2D) patients. Serum trehalose and glutamate were determined via ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry system. Covariates were collected by a standardized questionnaire, clinical examinations and laboratory assessments. Individual and joint association of trehalose and glutamate with DR were quantified by multiple conditional logistic regression models. The adjusted odds of DR averagely decreased by 86% [odds ratio (OR): 0.14; 95% confidence interval (CI): 0.06,0.33] with per interquartile range increase of trehalose. Comparing with the lowest quartile, adjusted OR (95% CI) were 0.20 (0.05,0.83), 0.14 (0.03,0.63) and 0.01 (<0.01,0.05) for participants in the 2nd, 3rd and 4th quartiles of trehalose, respectively. In addition, as compared to their counterparts, T2D patients with lower trehalose (<median) and higher glutamate (≥ median) had the highest odds of DR (OR: 36.81; 95% CI: 6.75, 200.61). Apparent super-multiplicative effect of trehalose and glutamate on DR was observed, whereas relative excess risk due to interaction (RERI) was not significant. The study suggests that trehalose is beneficial to inhibit the occurrence of DR and synergistically decreases the risk of DR with reduced glutamate. Our findings also provide new insights into the mechanisms of DR and further longitudinal studies are required to confirm these findings.


Sign in / Sign up

Export Citation Format

Share Document