scholarly journals Fully-automated atrophy segmentation in dry age-related macular degeneration in optical coherence tomography

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasmine Derradji ◽  
Agata Mosinska ◽  
Stefanos Apostolopoulos ◽  
Carlos Ciller ◽  
Sandro De Zanet ◽  
...  

AbstractAge-related macular degeneration (AMD) is a progressive retinal disease, causing vision loss. A more detailed characterization of its atrophic form became possible thanks to the introduction of Optical Coherence Tomography (OCT). However, manual atrophy quantification in 3D retinal scans is a tedious task and prevents taking full advantage of the accurate retina depiction. In this study we developed a fully automated algorithm segmenting Retinal Pigment Epithelial and Outer Retinal Atrophy (RORA) in dry AMD on macular OCT. 62 SD-OCT scans from eyes with atrophic AMD (57 patients) were collected and split into train and test sets. The training set was used to develop a Convolutional Neural Network (CNN). The performance of the algorithm was established by cross validation and comparison to the test set with ground-truth annotated by two graders. Additionally, the effect of using retinal layer segmentation during training was investigated. The algorithm achieved mean Dice scores of 0.881 and 0.844, sensitivity of 0.850 and 0.915 and precision of 0.928 and 0.799 in comparison with Expert 1 and Expert 2, respectively. Using retinal layer segmentation improved the model performance. The proposed model identified RORA with performance matching human experts. It has a potential to rapidly identify atrophy with high consistency.

2012 ◽  
Vol 06 (02) ◽  
pp. 72 ◽  
Author(s):  
Albert J Augustin ◽  

The purpose of this article is to show the feasibility of the ‘Advanced [retinal pigment epithelium] RPE analysis’ software tool to measure drusen area and volume as well as the area of geographic atrophy (GA) in patients with dry age-related macular degeneration (AMD). The source data from spectral domain optical coherence tomography (SD-OCT) images obtained from three patients with confirmed dry AMD using Cirrus™ HD-OCT (Carl Zeiss Meditec) were re-evaluated with the new software analysis tool Advanced RPE analysis. The area of GA as well as drusen area and volume were measured and analysis of results were presented along with calculated values in two clearly arranged screens. Changes between visits were easily detectable and could be followed over time. Results correlated well with clinical observation. The conclusion reached was that the new Advanced RPE analysis software allows the automated, objective and quantitative assessment of atrophic lesions and drusen. It thus could prove to be useful in determining disease stages as well as prognosis more precisely, and provides the opportunity to monitor the effectiveness of new therapies in clinical trials.


Folia Medica ◽  
2019 ◽  
Vol 61 (2) ◽  
pp. 317-326
Author(s):  
Vladimir N. Stavrev ◽  
Nelly P. Sivkova ◽  
Desislava N. Koleva-Georgieva

Abstract Age-related macular degeneration is a leading cause of irreversible vision loss in individuals over 55 years of age worldwide. Conventionally, it is divided into two subtypes – dry (non-neovascular) and wet (neovascular) form. Neovascular age-related macular degeneration comprises only 10-15% of all patients but is responsible for more than 80% of blindness related to the disease. It requires early diagnosis and timely treatment. Fluorescein angiography is the current ‘gold standard’ for diagnosing neovascular forms. However, as an invasive procedure, it may be contraindicated in some circumstances and cause serious adverse effects. Optical coherence tomography-angiography is a relatively new, non-invasive and fast imaging modality gaining popularity in the diagnosis of age-related macular degeneration, especially for the neovascular form of the disease. It enables structural and functional information of blood vessels in the retina and choroid, without the need of an intravenous dye. In this study we present and discuss 3 cases of different subtypes of choroidal neovascularization secondary to neovascular age-related macular degeneration. All of them were examined by fluorescein angiography and optical coherence tomography-angiography. The results were qualitatively analyzed.


2021 ◽  
Vol 8 ◽  
Author(s):  
Shasha Yang ◽  
Zongyin Gao ◽  
Haijiang Qiu ◽  
Chengguo Zuo ◽  
Lan Mi ◽  
...  

Purpose: To observe the relationship between the characteristic changes in the drusen morphology revealed by the spectral-domain optical coherence tomography (SD-OCT) and the progression of age-related macular degeneration (AMD).Methods: A total of 380 drusen in 45 eyes in 35 patients with the intermediate drusen were longitudinally followed up every 6 months by SD-OCT for a period of 24 months. The drusen were divided into the dynamic group and stable group according to the following parameters: number, volume, concurrent retinal pigment epithelium (RPE)/ellipsoid zone (EZ) damage, and the development of advanced AMD. The morphological characteristics of the progressive or stable drusen were further analyzed. Odds ratios (ORs) and the risk for the drusen progression were calculated.Results: The level of interobserver and intraobserver agreement for each drusen tomographic morphological parameters ranged from 82.7 to 90%. At the end of an average follow-up of 15.92 ± 6.99 months, six patients developed choroidal neovascularization and no patients developed geographic atrophy. Finally, 139 drusen changed and 241 drusen remained stable. The drusen with low reflectivity (p < 0.001; OR: 5.26; 95% CI: 2.24–12.36), non-homogeneity without a core (p < 0.001; OR: 4.31; 95% CI: 2.08–8.92), RPE damage (p < 0.001; OR: 28.12; 95% CI: 9.43–83.85), and the EZ damage (p < 0.001; OR: 14.01; 95% CI: 5.28–37.18) were significantly associated with active change; the drusen with low reflectivity (p = 0.01; OR: 2.95; 95% CI: 1.29–6.75) and decreased overlying RPE reflectivity (p < 0.001; OR: 21.67; 95% CI: 9.20–51.02) were the independent predictors for progression. The drusen with high reflectivity were significantly associated with stabilization (p = 0.03; OR: 0.17; 95% CI: 0.04–0.84).Conclusion: Spectral-domain optical coherence tomography is an optimized, accurate, and efficient method to follow-up the drusen. The intermediate non-exudative AMD prognosis of the patient was most strongly correlated with the drusen reflectivity and disruption of the overlying RPE layer. The drusen with low reflectivity and overlying RPE damage were more likely to progress and required frequent follow-up.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Olena Puzyeyeva ◽  
Wai Ching Lam ◽  
John G. Flanagan ◽  
Michael H. Brent ◽  
Robert G. Devenyi ◽  
...  

Purpose. To present a series of retinal disease cases that were imaged by spectral domain optical coherence tomography (SD-OCT) in order to illustrate the potential and limitations of this new imaging modality.Methods. The series comprised four selected cases (one case each) of age-related macular degeneration (ARMD), diabetic retinopathy (DR), central retinal artery occlusion (CRAO), and branch retinal vein occlusion (BRVO). Patients were imaged using the Heidelberg Spectralis (Heidelberg Engineering, Germany) in SD-OCT mode. Patients also underwent digital fundus photography and clinical assessment.Results. SD-OCT imaging of a case of age-related macular degeneration revealed a subfoveal choroidal neovascular membrane with detachment of the retinal pigment epithelium (RPE) and neurosensory retina. Using SD-OCT, the cases of DR and BRVO both exhibited macular edema with cystoid spaces visible in the outer retina.Conclusions. The ability of SD-OCT to clearly and objectively elucidate subtle morphological changes within the retinal layers provides information that can be used to formulate diagnoses with greater confidence.


2019 ◽  
Vol 29 (5) ◽  
pp. 471-473 ◽  
Author(s):  
Alfredo Pece ◽  
Enrico Borrelli ◽  
Riccardo Sacconi ◽  
Giulio Maione ◽  
Francesco Bandello ◽  
...  

The authors report a case of a female patient affected by neovascular age-related macular degeneration (AMD). In particular, multiple sub-retinal hyperreflective infiltrates were found on optical coherence tomography. Optical coherence tomography examination of her right eye displayed the presence of sub-retinal pigment epithelium hyporeflective spaces located beneath a hyperreflective fibrotic neovascularization. This case highlights the importance of differentiating choroidal clefts from choroidal caverns.


Sign in / Sign up

Export Citation Format

Share Document