layer segmentation
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 77)

H-INDEX

22
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Sunil K Yadav ◽  
Rahele Kafieh ◽  
Hanna G Zimmermann ◽  
Josef Kauer-Bonin ◽  
Kouros Nouri-Mahdavi ◽  
...  

Intraretinal layer segmentation on macular optical coherence tomography (OCT) images generates non invasive biomarkers querying neuronal structures with near cellular resolution. While first deep learning methods have delivered promising results with high computing power demands, a reliable, power efficient and reproducible intraretinal layer segmentation is still an unmet need. We propose a cascaded two-stage network for intraretinal layer segmentation, with both networks being compressed versions of U-Net (CCU-INSEG). The first network is responsible for retinal tissue segmentation from OCT B-scans. The second network segments 8 intraretinal layers with high fidelity. By compressing U-Net, we achieve 392- and 26-time reductions in model size and parameters in the first and second network, respectively. Still, our method delivers almost similar accuracy compared to U-Net without additional constraints of computation and memory resources. At the post-processing stage, we introduce Laplacian-based outlier detection with layer surface hole filling by adaptive non-linear interpolation. We trained our method using 17,458 B-scans from patients with autoimmune optic neuropathies, i.e. multiple sclerosis, and healthy controls. Voxel-wise comparison against manual segmentation produces a mean absolute error of 2.3mu, which is 2.5x better than the device's own segmentation. Voxel-wise comparison against external multicenter data leads to a mean absolute error of 2.6mu for glaucoma data using the same gold standard segmentation approach, and 3.7mu mean absolute error compared against an externally segmented reference data set. In 20 macular volume scans from patients with severe disease, 3.5% of B-scan segmentation results were rejected by an experienced grader, whereas this was the case in 41.4% of B-scans segmented with a graph-based reference method.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasmine Derradji ◽  
Agata Mosinska ◽  
Stefanos Apostolopoulos ◽  
Carlos Ciller ◽  
Sandro De Zanet ◽  
...  

AbstractAge-related macular degeneration (AMD) is a progressive retinal disease, causing vision loss. A more detailed characterization of its atrophic form became possible thanks to the introduction of Optical Coherence Tomography (OCT). However, manual atrophy quantification in 3D retinal scans is a tedious task and prevents taking full advantage of the accurate retina depiction. In this study we developed a fully automated algorithm segmenting Retinal Pigment Epithelial and Outer Retinal Atrophy (RORA) in dry AMD on macular OCT. 62 SD-OCT scans from eyes with atrophic AMD (57 patients) were collected and split into train and test sets. The training set was used to develop a Convolutional Neural Network (CNN). The performance of the algorithm was established by cross validation and comparison to the test set with ground-truth annotated by two graders. Additionally, the effect of using retinal layer segmentation during training was investigated. The algorithm achieved mean Dice scores of 0.881 and 0.844, sensitivity of 0.850 and 0.915 and precision of 0.928 and 0.799 in comparison with Expert 1 and Expert 2, respectively. Using retinal layer segmentation improved the model performance. The proposed model identified RORA with performance matching human experts. It has a potential to rapidly identify atrophy with high consistency.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Varsha Alex ◽  
Tahmineh Motevasseli ◽  
William R. Freeman ◽  
Jefy A. Jayamon ◽  
Dirk-Uwe G. Bartsch ◽  
...  

AbstractComparing automated retinal layer segmentation using proprietary software (Heidelberg Spectralis HRA + OCT) and cross-platform Optical Coherence Tomography (OCT) segmentation software (Orion). Image segmentations of normal and diseased (iAMD, DME) eyes were performed using both softwares and then compared to the ‘gold standard’ of manual segmentation. A qualitative assessment and quantitative (layer volume) comparison of segmentations were performed. Segmented images from the two softwares were graded by two masked graders and in cases with difference, a senior retina specialist made a final independent decisive grading. Cross-platform software was significantly better than the proprietary software in the segmentation of NFL and INL layers in Normal eyes. It generated significantly better segmentation only for NFL in iAMD and for INL and OPL layers in DME eyes. In normal eyes, all retinal layer volumes calculated by the two softwares were moderate-strongly correlated except OUTLY. In iAMD eyes, GCIPL, INL, ONL, INLY, TRV layer volumes were moderate-strongly correlated between softwares. In eyes with DME, all layer volume values were moderate-strongly correlated between softwares. Cross-platform software can be used reliably in research settings to study the retinal layers as it compares well against manual segmentation and the commonly used proprietary software for both normal and diseased eyes.


2021 ◽  
Author(s):  
David Alonso-Caneiro ◽  
Jason Kugelman ◽  
Janelle Tong ◽  
Michael Kalloniatis ◽  
Fred K. Chen ◽  
...  

2021 ◽  
Author(s):  
Adam J. Shephard ◽  
Simon Graham ◽  
R. M. Saad Bashir ◽  
Mostafa Jahanifar ◽  
Hanya Mahmood ◽  
...  

Author(s):  
Dmitrij Sitenko ◽  
Bastian Boll ◽  
Christoph Schnörr

AbstractAt the present time optical coherence tomography (OCT) is among the most commonly used non-invasive imaging methods for the acquisition of large volumetric scans of human retinal tissues and vasculature. The substantial increase of accessible highly resolved 3D samples at the optic nerve head and the macula is directly linked to medical advancements in early detection of eye diseases. To resolve decisive information from extracted OCT volumes and to make it applicable for further diagnostic analysis, the exact measurement of retinal layer thicknesses serves as an essential task be done for each patient separately. However, manual examination of OCT scans is a demanding and time consuming task, which is typically made difficult by the presence of tissue-dependent speckle noise. Therefore, the elaboration of automated segmentation models has become an important task in the field of medical image processing. We propose a novel, purely data driven geometric approach to order-constrained 3D OCT retinal cell layer segmentation which takes as input data in any metric space and can be implemented using only simple, highly parallelizable operations. As opposed to many established retinal layer segmentation methods, we use only locally extracted features as input and do not employ any global shape prior. The physiological order of retinal cell layers and membranes is achieved through the introduction of a smoothed energy term. This is combined with additional regularization of local smoothness to yield highly accurate 3D segmentations. The approach thereby systematically avoid bias pertaining to global shape and is hence suited for the detection of anatomical changes of retinal tissue structure. To demonstrate its robustness, we compare two different choices of features on a data set of manually annotated 3D OCT volumes of healthy human retina. The quality of computed segmentations is compared to the state of the art in automatic retinal layer segmention as well as to manually annotated ground truth data in terms of mean absolute error and Dice similarity coefficient. Visualizations of segmented volumes are also provided.


2021 ◽  
pp. 102342
Author(s):  
N. Liu ◽  
K. Ren ◽  
W. Zhang ◽  
Y.F. Zhang ◽  
Y.X. Chew ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document