scholarly journals Impact of a nonnative parasitoid species on intraspecific interference and offspring sex ratio

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yao Zhuo Zhang ◽  
Zhengya Jin ◽  
James Rudolph Miksanek ◽  
Midori Tuda

AbstractIn an assemblage of multiple predators sharing a single prey species, the combined effects of the component species may scale unpredictably because of emergent interspecific interactions. Prior studies suggest that chaotic but persistent community dynamics are induced by intra-/interspecific interactions between native and nonnative parasitoids competing over a shared host. Here, we test the impact of the nonnative parasitoid Heterospilus prosopidis (Hymenoptera: Braconidae) on the intraspecific interference and offspring sex ratio of the native parasitoid Anisopteromalus calandrae (Hymenoptera: Pteromalidae). We found that the nonnative parasitoid reduced intraspecific interference among native parasitoids and decreased the proportion of female offspring produced by the native parasitoid (predicted under conditions of reduced host availability). At higher host densities, the nonnative parasitoid contributed less to the total proportion of hosts parasitized, as its innate saturating Type II response changed to a dome-shaped Type IV response with increasing density of the native parasitoid, while the native parasitoid retained its increasing Type I response. This inverse host-density-dependent response between the two parasitoids and associated competitive superiority can explain the observed changes in parasitism; at high host densities, the searching efficiency of the native parasitoid increases via host feeding while the nonnative parasitoid experiences egg limitation. These results highlight the importance of the complementary top-down effects of multiple consumers on a single resource.

2012 ◽  
Vol 279 (1736) ◽  
pp. 2122-2127 ◽  
Author(s):  
Lucy I. Wright ◽  
Kimberley L. Stokes ◽  
Wayne J. Fuller ◽  
Brendan J. Godley ◽  
Andrew McGowan ◽  
...  

For organisms with temperature-dependent sex determination (TSD), skewed offspring sex ratios are common. However, climate warming poses the unique threat of producing extreme sex ratio biases that could ultimately lead to population extinctions. In marine turtles, highly female-skewed hatchling sex ratios already occur and predicted increases in global temperatures are expected to exacerbate this trend, unless species can adapt. However, it is not known whether offspring sex ratios persist into adulthood, or whether variation in male mating success intensifies the impact of a shortage of males on effective population size. Here, we use parentage analysis to show that in a rookery of the endangered green turtle ( Chelonia mydas ), despite an offspring sex ratio of 95 per cent females, there were at least 1.4 reproductive males to every breeding female. Our results suggest that male reproductive intervals may be shorter than the 2–4 years typical for females, and/or that males move between aggregations of receptive females, an inference supported by our satellite tracking, which shows that male turtles may visit multiple rookeries. We suggest that male mating patterns have the potential to buffer the disruptive effects of climate change on marine turtle populations, many of which are already seriously threatened.


2004 ◽  
Vol 10 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Bernt-Erik Sæther ◽  
Erling J. Solberg ◽  
Morten Heim ◽  
John E. Stacy ◽  
Kjetill S. Jakobsen ◽  
...  

2011 ◽  
Vol 45 (1) ◽  
pp. 55-57 ◽  
Author(s):  
M O M Chelini ◽  
N L Souza ◽  
E Otta

2018 ◽  
Vol 285 (1891) ◽  
pp. 20181251 ◽  
Author(s):  
Andrea E. Wishart ◽  
Cory T. Williams ◽  
Andrew G. McAdam ◽  
Stan Boutin ◽  
Ben Dantzer ◽  
...  

Fisher's principle explains that population sex ratio in sexually reproducing organisms is maintained at 1 : 1 owing to negative frequency-dependent selection, such that individuals of the rare sex realize greater reproductive opportunity than individuals of the more common sex until equilibrium is reached. If biasing offspring sex ratio towards the rare sex is adaptive, individuals that do so should have more grandoffspring. In a wild population of North American red squirrels ( Tamiasciurus hudsonicus ) that experiences fluctuations in resource abundance and population density, we show that overall across 26 years, the secondary sex ratio was 1 : 1; however, stretches of years during which adult sex ratio was biased did not yield offspring sex ratios biased towards the rare sex. Females that had litters biased towards the rare sex did not have more grandoffspring. Critically, the adult sex ratio was not temporally autocorrelated across years, thus the population sex ratio experienced by parents was independent of the population sex ratio experienced by their offspring at their primiparity. Expected fitness benefits of biasing offspring sex ratio may be masked or negated by fluctuating environments across years, which limit the predictive value of the current sex ratio.


Sign in / Sign up

Export Citation Format

Share Document