scholarly journals Coastal wetlands can be saved from sea level rise by recreating past tidal regimes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahmood Sadat-Noori ◽  
Caleb Rankin ◽  
Duncan Rayner ◽  
Valentin Heimhuber ◽  
Troy Gaston ◽  
...  

AbstractClimate change driven Sea Level Rise (SLR) is creating a major global environmental crisis in coastal ecosystems, however, limited practical solutions are provided to prevent or mitigate the impacts. Here, we propose a novel eco-engineering solution to protect highly valued vegetated intertidal ecosystems. The new ‘Tidal Replicate Method’ involves the creation of a synthetic tidal regime that mimics the desired hydroperiod for intertidal wetlands. This synthetic tidal regime can then be applied via automated tidal control systems, “SmartGates”, at suitable locations. As a proof of concept study, this method was applied at an intertidal wetland with the aim of restabilising saltmarsh vegetation at a location representative of SLR. Results from aerial drone surveys and on-ground vegetation sampling indicated that the Tidal Replicate Method effectively established saltmarsh onsite over a 3-year period of post-restoration, showing the method is able to protect endangered intertidal ecosystems from submersion. If applied globally, this method can protect high value coastal wetlands with similar environmental settings, including over 1,184,000 ha of Ramsar coastal wetlands. This equates to a saving of US$230 billion in ecosystem services per year. This solution can play an important role in the global effort to conserve coastal wetlands under accelerating SLR.

2010 ◽  
Vol 15 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Clement Elumpe Akumu ◽  
Sumith Pathirana ◽  
Serwan Baban ◽  
Daniel Bucher

Ecosystems ◽  
2016 ◽  
Vol 19 (8) ◽  
pp. 1445-1459 ◽  
Author(s):  
Camille L. Stagg ◽  
Ken W. Krauss ◽  
Donald R. Cahoon ◽  
Nicole Cormier ◽  
William H. Conner ◽  
...  

Eos ◽  
2016 ◽  
Vol 97 ◽  
Author(s):  
Lily Strelich

Scientists examine the role of variables like tides and suspended sediment concentration to improve methods of evaluating coastal wetlands and how they may respond to future sea level rise.


Data ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 46 ◽  
Author(s):  
Elizabeth Burke Watson ◽  
LeeAnn Haaf ◽  
Kirk Raper ◽  
Erin Reilly

Digital elevation models (DEMs) based on LiDAR surveys provide critical information for predicting the vulnerability of coastal areas to sea-level rises. Due to the poor penetration of LiDAR pulses in marsh vegetation, bare-earth DEMs for coastal wetlands are often subject to positive elevation bias, and thus underestimate vulnerability. This data publication includes comprehensive elevation surveys from seven coastal wetlands in coastal New Jersey, and an evaluation of the accuracy and positive elevation bias of each publically available DEM. Resampling the DEMs at a coarser resolution, replacing cell values using the minimum value in a wider search window (4 m), removed this positive elevation bias with no loss of accuracy.


2021 ◽  
Author(s):  
Kerrylee Rogers ◽  
Neil Saintilan

<p>The resilience of coastal wetlands in the fate of sea-level rise is proposed to be related to the combined influence of changes in substrate organic matter volume, mineral sediment volume, auto-compaction of accumulating material and deep subsidence; however, relatively few studies have measured all of these variables. In addition, there is ongoing debate about the suitability of this data for modelling the behaviour of coastal wetlands under anticipated sea-level rise projections as temporal discrepancies in the elevation response of coastal wetlands derived from observational and stratigraphic records exist. To resolve these issues, data derived from a range of techniques sensitive to changes occurring at annual, decadal and century timescales, is presented in the context of available accommodation space, that is, the space in which tidally-borne material can accumulate. Focussing on an embayment in Victoria, Australia, analyses confirm that at annual-decadal timescales, organic matter behaves like a sponge, compressing as the overburden of material accumulates, resulting in auto-compaction that modulates the degree of surface elevation change that occurs as tidally-borne material accumulates. These processes operate concurrently and are influenced by sediment availability, yet vary on the basis of available accommodation space. At longer timescales, the influence of auto-compaction diminishes as organic matter has undergone significant compression and decomposition, yet accumulated material remains proportional to available accommodation space. These analyses confirm that temporal discrepancies in rates of substrate elevation change can be resolved by accounting for the timescale over which processes operate and the influence of sea-level rise on available accommodation space. Accordingly, models should dynamically consider rates of surface elevation change relative to available accommodation space.</p>


2021 ◽  
Author(s):  
Clara E Estrela Segrelles ◽  
Miguel Ángel Pérez Martín ◽  
Gabriel Gómez Martínez

<p>Sea level rise produced by climate change severely affects coastal ecosystems. The increase in the area below sea level facilitates the penetration of the marine wedge and causes an increase in soil salinity. Coastal wetlands are areas of great ecological importance due to the richness of flora and fauna that inhabit them. A change in salinity conditions could lead to a reduction or loss of habitat for the wetland biota. Based on RCP4.5 and RCP8.5 CMIP5 multimodel scenarios, in the Western Mediterranean coast, the sea level will rise 0.16 m in the short term (2026 - 2045) and 0.79 m in 2100. Also, high-end scenarios indicate that sea level will rise between 1.35 m and 1.92 m in the long term.</p><p>A sea level rise analysis has been developed in the coastal wetlands of Júcar River Basin District (JRBD). The results show that coastal wetlands are the mainly area affected in the JRBD, so the 90% of the area under the sea level are wetlands. L’Albufera de Valencia is the main wetland in this basin and, also the main wetland affected. It is an anthropized humid zone, regulated by users through gates to preserve the adequate water level for agricultural and environmental purposes such as rice cultivation around the lake and bird habitats conservation, especially in winter. The outcome of the study shows a significative increase in the area below the sea from 507 ha and 4.2 hm<sup>3</sup> of water volume at present to 3,244 ha that represents 42.6 hm<sup>3</sup> of water volume in the short term. In the long term, the area below the sea is 7,253 ha which means 118.4 hm<sup>3</sup> of water volume in the percentile 50 scenario and, in the worst extreme scenario, it is 13,896 ha that represents 289.7 hm<sup>3</sup> of water volume. This leads to a redefinition of the lake management levels as a climate change adaptation measure to prevent the lake salinization and severe impacts in the lake ecosystem. L’Albufera lake levels need to be increased in the next years to avoid the sea water penetration, related to the sea level rise. Thus, in the short term the lake levels must be increased around 0.16 m and, in the long term, L’Albufera levels must be increased around 0.8 m.</p>


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0205176 ◽  
Author(s):  
Karim Alizad ◽  
Scott C. Hagen ◽  
Stephen C. Medeiros ◽  
Matthew V. Bilskie ◽  
James T. Morris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document