scholarly journals The acute transcriptional responses to dietary methionine restriction are triggered by inhibition of ternary complex formation and linked to Erk1/2, mTOR, and ATF4

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kirsten P. Stone ◽  
Sujoy Ghosh ◽  
Jean Paul Kovalik ◽  
Manda Orgeron ◽  
Desiree Wanders ◽  
...  

AbstractThe initial sensing of dietary methionine restriction (MR) occurs in the liver where it activates an integrated stress response (ISR) that quickly reduces methionine utilization. The ISR program is regulated in part by ATF4, but ATF4’s prototypical upstream regulator, eIF2α, is not acutely activated by MR. Bioinformatic analysis of RNAseq and metabolomics data from liver samples harvested 3 h and 6 h after initiating MR shows that general translation is inhibited at the level of ternary complex formation by an acute 50% reduction of hepatic methionine that limits formation of initiator methionine tRNA. The resulting ISR is induced by selective expression of ATF4 target genes that mediate adaptation to reduced methionine intake and return hepatic methionine to control levels within 4 days of starting the diet. Complementary in vitro experiments in HepG2 cells after knockdown of ATF4, or inhibition of mTOR or Erk1/2 support the conclusion that the early induction of genes by MR is partially dependent on ATF4 and regulated by both mTOR and Erk1/2. Taken together, these data show that initiation of dietary MR induces an mTOR- and Erk1/2-dependent stress response that is linked to ATF4 by the sharp, initial drop in hepatic methionine and resulting repression of translation pre-initiation.

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Huarong Chen ◽  
Renduo Song ◽  
Guohui Wang ◽  
Zonghui Ding ◽  
Chunying Yang ◽  
...  

Author(s):  
Parth Sarthi Sen Gupta ◽  
Satyaranjan Biswal ◽  
Saroj Kumar Panda ◽  
Abhik Kumar Ray ◽  
Malay Kumar Rana

<p>While an FDA approved drug Ivermectin was reported to dramatically reduce the cell line of SARS-CoV-2 by ~5000 folds within 48 hours, the precise mechanism of action and the COVID-19 molecular target involved in interaction with this in-vitro effective drug are unknown yet. Among 12 different COVID-19 targets studied here, the RNA dependent RNA polymerase (RdRp) with RNA and Helicase NCB site show the strongest affinity to Ivermectin amounting -10.4 kcal/mol and -9.6 kcal/mol, respectively. Molecular dynamics of corresponding protein-drug complexes reveals that the drug bound state of RdRp with RNA has better structural stability than the Helicase NCB site, with MM/PBSA free energy of -135.2 kJ/mol, almost twice that of Helicase (-76.6 kJ/mol). The selectivity of Ivermectin to RdRp is triggered by a cooperative interaction of RNA-RdRp by ternary complex formation. Identification of the target and its interaction profile with Ivermectin can lead to more powerful drug designs for COVID-19 and experimental exploration. </p>


Author(s):  
Yoselin Jara ◽  
Mary Lorena Araujo ◽  
Waleska Madden ◽  
Vito Lubes ◽  
Lino Hernández

Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2609
Author(s):  
Han Fang ◽  
Kirsten P. Stone ◽  
Sujoy Ghosh ◽  
Laura A. Forney ◽  
Thomas W. Gettys

Dietary protein restriction and dietary methionine restriction (MR) produce a comparable series of behavioral, physiological, biochemical, and transcriptional responses. Both dietary regimens produce a similar reduction in intake of sulfur amino acids (e.g., methionine and cystine), and both diets increase expression and release of hepatic FGF21. Given that FGF21 is an essential mediator of the metabolic phenotype produced by both diets, an important unresolved question is whether dietary protein restriction represents de facto methionine restriction. Using diets formulated from either casein or soy protein with matched reductions in sulfur amino acids, we compared the ability of the respective diets to recapitulate the metabolic phenotype produced by methionine restriction using elemental diets. Although the soy-based control diets supported faster growth compared to casein-based control diets, casein-based protein restriction and soy-based protein restriction produced comparable reductions in body weight and fat deposition, and similar increases in energy intake, energy expenditure, and water intake. In addition, the prototypical effects of dietary MR on hepatic and adipose tissue target genes were similarly regulated by casein- and soy-based protein restriction. The present findings support the feasibility of using restricted intake of diets from various protein sources to produce therapeutically effective implementation of dietary methionine restriction.


2013 ◽  
Vol 77 (8) ◽  
pp. 1715-1721 ◽  
Author(s):  
Mayumi OKUMURA ◽  
Angela M. KATSUYAMA ◽  
Hideki SHIBATA ◽  
Masatoshi MAKI

1999 ◽  
Vol 274 (18) ◽  
pp. 12765-12773 ◽  
Author(s):  
Liliane A. Dickinson ◽  
John W. Trauger ◽  
Eldon E. Baird ◽  
Peter B. Dervan ◽  
Barbara J. Graves ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document