scholarly journals Attenuation of sensory processing in the primary somatosensory cortex during rubber hand illusion

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masanori Sakamoto ◽  
Hirotoshi Ifuku

AbstractThe neural representation of the body is easily altered by the integration of multiple sensory signals in the brain. The “rubber hand illusion” (RHI) is one of the most popular experimental paradigms to investigate this phenomenon. During this illusion, a feeling of ownership of the rubber hand is created. Some studies have shown that somatosensory processing in the brain is attenuated when RHI occurs. However, it is unknown where attenuation of somatosensory processing occurs. Here, we show that somatosensory processing is attenuated in the primary somatosensory cortex. We found that the earliest response of somatosensory evoked potentials, which is thought to originate from the primary somatosensory cortex, was attenuated during RHI. Furthermore, this attenuation was observed before the occurrence of the illusion. Our results suggest that attenuation of sensory processing in the primary somatosensory cortex is one of the factors influencing the occurrence of the RHI.

2021 ◽  
Author(s):  
Masanori Sakamoto ◽  
Hirotoshi Ifuku

Abstract The neural representation of the body is easily altered by the integration of multiple sensory signals in the brain. The “rubber hand illusion” (RHI) is one of the most popular experimental paradigms to investigate this phenomenon. During this illusion, ownership of the rubber hand is created. Some studies have shown that somatosensory processing in the brain is attenuated when RHI occurs. However, it is unknown where attenuation of somatosensory inputs occurs. Here, we show that somatosensory input from the hand is attenuated at the primary somatosensory cortex. We found that the early response of somatosensory evoked potential, which is thought to originate from the primary somatosensory cortex, was attenuated during RHI. Furthermore, this attenuation was observed before the occurrence of the illusion. Our results suggest that attenuation of somatosensory inputs from the hand to the brain is one of the factors influencing the occurrence of the RHI.


Author(s):  
Masanori Sakamoto ◽  
Hirotoshi Ifuku

Badminton players have a plastic modification of their arm representation in the brain due to the prolonged use of their racket. However, it is not known whether their arm representation can be altered through short-term visuotactile integration. The neural representation of the body is easily altered when multiple sensory signals are integrated in the brain. One of the most popular experimental paradigms for investigating this phenomenon is the “rubber hand illusion.” This study was designed to investigate the effect of prolonged use of a racket on the modulation of arm representation during the rubber hand illusion in badminton players. When badminton players hold the racket, their badminton experience in years is negatively correlated with the magnitude of the rubber hand illusion. This finding suggests that tool embodiment obtained by the prolonged use of the badminton racket is less likely to be disturbed when holding the racket.


Psihologija ◽  
2022 ◽  
pp. 2-2
Author(s):  
Aitao Lu ◽  
Xuebin Wang ◽  
Xiuxiu Hong ◽  
Tianhua Song ◽  
Meifang Zhang ◽  
...  

Many studies have reported that bottom-up multisensory integration of visual, tactile, and proprioceptive information can distort our sense of body-ownership, producing rubber hand illusion (RHI). There is less evidence about when and how the body-ownership is distorted in the brain during RHI. To examine whether this illusion effect occurs preattentively at an early stage of processing, we monitored the visual mismatch negativity (vMMN) component (the index of automatic deviant detection) and N2 (the index for conflict monitoring). Participants first performed an RHI elicitation task in a synchronous or asynchronous setting and then finished a passive visual oddball task in which the deviant stimuli were unrelated to the explicit task. A significant interaction between Deviancy (deviant hand vs. standard hand) and Group (synchronous vs. asynchronous) was found. The asynchronous group showed clear mismatch effects in both vMMN and N2, while the synchronous group had such effect only in N2. The results indicate that after the elicitation of RHI bottom-up integration could be retrieved at the early stage of sensory processing before top-down processing, providing evidence for the priority of the bottom-up processes after the generation of RHI and revealing the mechanism of how the body-ownership is unconsciously distorted in the brain.


2019 ◽  
Author(s):  
Alexander M. Puckett ◽  
Saskia Bollmann ◽  
Keerat Junday ◽  
Markus Barth ◽  
Ross Cunnington

AbstractSomatosensation is fundamental to our ability to sense our body and interact with the world. Our body is continuously sampling the environment using a variety of receptors tuned to different features, and this information is routed up to primary somatosensory cortex. Strikingly, the spatial organization of the peripheral receptors in the body are well maintained, with the resulting representation of the body in the brain being referred to as the somatosensory homunculus. Recent years have seen considerable advancements in the field of high-resolution fMRI, which have enabled an increasingly detailed examination of the organization and properties of this homunculus. Here we combined advanced imaging techniques at ultra-high field (7T) with a recently developed Bayesian population receptive field (pRF) modeling framework to examine pRF properties in primary somatosensory cortex. In each subject, vibrotactile stimulation of the fingertips (i.e., the peripheral mechanoreceptors) modulated the fMRI response along the post-central gyrus and these signals were used to estimate pRFs. We found the pRF center location estimates to be in accord with previous work as well as evidence of other properties in line with the underlying neurobiology. Specifically, as expected from the known properties of cortical magnification, we find a larger representation of the index finger compared to the other stimulated digits (middle, index, little). We also show evidence that the little finger is marked by the largest pRF sizes. The ability to estimate somatosensory pRFs in humans provides an unprecedented opportunity to examine the neural mechanisms underlying somatosensation and is critical for studying how the brain, body, and environment interact to inform perception and action.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael Schaefer ◽  
Anja Kühnel ◽  
Franziska Rumpel ◽  
Matti Gärtner

AbstractPrevious research revealed an active network of brain areas such as insula and anterior cingulate cortex when witnessing somebody else in pain and feeling empathy. But numerous studies also suggested a role of the somatosensory cortices for state and trait empathy. While recent studies highlight the role of the observer’s primary somatosensory cortex when seeing painful or nonpainful touch, the interaction of somatosensory cortex activity with empathy when receiving touch on the own body is unknown. The current study examines the relationship of touch related somatosensory cortex activity with dispositional empathy by employing an fMRI approach. Participants were touched on the palm of the hand either by the hand of an experimenter or by a rubber hand. We found that the BOLD responses in the primary somatosensory cortex were associated with empathy personality traits personal distress and perspective taking. This relationship was observed when participants were touched both with the experimenter’s real hand or a rubber hand. What is the reason for this link between touch perception and trait empathy? We argue that more empathic individuals may express stronger attention both to other’s human perceptions as well as to the own sensations. In this way, higher dispositional empathy levels might enhance tactile processing by top-down processes. We discuss possible implications of these findings.


2021 ◽  
pp. 133-151 ◽  
Author(s):  
Noriaki Kanayama ◽  
Kentaro Hiromitsu

Is the body reducible to neural representation in the brain? There is some evidence that the brain contributes to the functioning of the body from neuroimaging, neurophysiological, and lesion studies. Well-known dyadic taxonomy of the body schema and the body image (hereafter BSBI) is based primarily on the evidence in brain-damaged patients. Although there is a growing consensus that the BSBI exists, there is little agreement on the dyadic taxonomy because it is not a concrete and common concept across various research fields. This chapter tries to investigate the body representation in the cortex and nervous system in terms of sensory modality and psychological function using two different approaches. The first approach is to review the neurological evidence and cortical area which is related to body representation, regardless of the BSBI, and then to reconsider how we postulate the BSBI in our brain. It can be considered that our body representation could be constructed by the whole of the neural system, including the cortex and peripheral nerves. The second approach is to revisit the BSBI conception from the viewpoint of recent neuropsychology and propose three types of body representation: body schema, body structural description, and body semantics. This triadic taxonomy is considered consistent with the cortical networks based on the evidence of bodily disorders due to brain lesions. These two approaches allow to reconsider the BSBI more carefully and deeply and to give us the possibility that the body representation could be underpinned with the network in the brain.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Atsushi Fukui ◽  
Hironobu Osaki ◽  
Yoshifumi Ueta ◽  
Kenta Kobayashi ◽  
Yoshihiro Muragaki ◽  
...  

Author(s):  
Matthew James Buchan ◽  
Gemma Gothard ◽  
Alexander von Klemperer ◽  
Joram J van Rheede

The posteromedial thalamus (POm) has extensive recurrent connectivity with the whisker-related primary somatosensory cortex (wS1) of rodents. However, its functional contribution to somatosensory processing in wS1 remains unclear. This article reviews several recent findings which begin to elucidate the role of POm in sensory evoked plasticity and discusses their implications for somatosensory processing.


Science ◽  
1979 ◽  
Vol 204 (4392) ◽  
pp. 521-523 ◽  
Author(s):  
J. Kaas ◽  
R. Nelson ◽  
M Sur ◽  
C. Lin ◽  
M. Merzenich

2018 ◽  
Vol 31 (6) ◽  
pp. 537-555 ◽  
Author(s):  
Jennifer L. Campos ◽  
Graziella El-Khechen Richandi ◽  
Babak Taati ◽  
Behrang Keshavarz

Percepts about our body’s position in space and about body ownership are informed by multisensory feedback from visual, proprioceptive, and tactile inputs. The Rubber Hand Illusion (RHI) is a multisensory illusion that is induced when an observer sees a rubber hand being stroked while they feel their own, spatially displaced, and obstructed hand being stroked. When temporally synchronous, the visual–tactile interactions can create the illusion that the rubber hand belongs to the observer and that the observer’s real hand is shifted in position towards the rubber hand. Importantly, little is understood about whether these multisensory perceptions of the body change with older age. Thus, in this study we implemented a classic RHI protocol (synchronous versus asynchronous stroking) with healthy younger (18–35) and older (65+) adults and measured the magnitude of proprioceptive drift and the subjective experience of body ownership. As an adjunctive objective measure, skin temperature was recorded to evaluate whether decreases in skin temperature were associated with illusory percepts, as has been shown previously. The RHI was observed for both age groups with respect to increased drift and higher ratings of ownership following synchronous compared to asynchronous stroking. Importantly, no effects of age and no interactions between age and condition were observed for either of these outcome measures. No effects were observed for skin temperature. Overall, these results contribute to an emerging field of research investigating the conditions under which age-related differences in multisensory integration are observed by providing insights into the role of visual, proprioceptive, and tactile inputs on bodily percepts.


Sign in / Sign up

Export Citation Format

Share Document