scholarly journals Fast and effective pseudo transfer entropy for bivariate data-driven causal inference

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Riccardo Silini ◽  
Cristina Masoller

AbstractIdentifying, from time series analysis, reliable indicators of causal relationships is essential for many disciplines. Main challenges are distinguishing correlation from causality and discriminating between direct and indirect interactions. Over the years many methods for data-driven causal inference have been proposed; however, their success largely depends on the characteristics of the system under investigation. Often, their data requirements, computational cost or number of parameters limit their applicability. Here we propose a computationally efficient measure for causality testing, which we refer to as pseudo transfer entropy (pTE), that we derive from the standard definition of transfer entropy (TE) by using a Gaussian approximation. We demonstrate the power of the pTE measure on simulated and on real-world data. In all cases we find that pTE returns results that are very similar to those returned by Granger causality (GC). Importantly, for short time series, pTE combined with time-shifted (T-S) surrogates for significance testing strongly reduces the computational cost with respect to the widely used iterative amplitude adjusted Fourier transform (IAAFT) surrogate testing. For example, for time series of 100 data points, pTE and T-S reduce the computational time by $$82\%$$ 82 % with respect to GC and IAAFT. We also show that pTE is robust against observational noise. Therefore, we argue that the causal inference approach proposed here will be extremely valuable when causality networks need to be inferred from the analysis of a large number of short time series.

2020 ◽  
Vol 34 (04) ◽  
pp. 5758-5766 ◽  
Author(s):  
Qiquan Shi ◽  
Jiaming Yin ◽  
Jiajun Cai ◽  
Andrzej Cichocki ◽  
Tatsuya Yokota ◽  
...  

This work proposes a novel approach for multiple time series forecasting. At first, multi-way delay embedding transform (MDT) is employed to represent time series as low-rank block Hankel tensors (BHT). Then, the higher-order tensors are projected to compressed core tensors by applying Tucker decomposition. At the same time, the generalized tensor Autoregressive Integrated Moving Average (ARIMA) is explicitly used on consecutive core tensors to predict future samples. In this manner, the proposed approach tactically incorporates the unique advantages of MDT tensorization (to exploit mutual correlations) and tensor ARIMA coupled with low-rank Tucker decomposition into a unified framework. This framework exploits the low-rank structure of block Hankel tensors in the embedded space and captures the intrinsic correlations among multiple TS, which thus can improve the forecasting results, especially for multiple short time series. Experiments conducted on three public datasets and two industrial datasets verify that the proposed BHT-ARIMA effectively improves forecasting accuracy and reduces computational cost compared with the state-of-the-art methods.


Author(s):  
Tie Liang ◽  
Qingyu Zhang ◽  
Xiaoguang Liu ◽  
Bin Dong ◽  
Xiuling Liu ◽  
...  

Abstract Background The key challenge to constructing functional corticomuscular coupling (FCMC) is to accurately identify the direction and strength of the information flow between scalp electroencephalography (EEG) and surface electromyography (SEMG). Traditional TE and TDMI methods have difficulty in identifying the information interaction for short time series as they tend to rely on long and stable data, so we propose a time-delayed maximal information coefficient (TDMIC) method. With this method, we aim to investigate the directional specificity of bidirectional total and nonlinear information flow on FCMC, and to explore the neural mechanisms underlying motor dysfunction in stroke patients. Methods We introduced a time-delayed parameter in the maximal information coefficient to capture the direction of information interaction between two time series. We employed the linear and non-linear system model based on short data to verify the validity of our algorithm. We then used the TDMIC method to study the characteristics of total and nonlinear information flow in FCMC during a dorsiflexion task for healthy controls and stroke patients. Results The simulation results showed that the TDMIC method can better detect the direction of information interaction compared with TE and TDMI methods. For healthy controls, the beta band (14–30 Hz) had higher information flow in FCMC than the gamma band (31–45 Hz). Furthermore, the beta-band total and nonlinear information flow in the descending direction (EEG to EMG) was significantly higher than that in the ascending direction (EMG to EEG), whereas in the gamma band the ascending direction had significantly higher information flow than the descending direction. Additionally, we found that the strong bidirectional information flow mainly acted on Cz, C3, CP3, P3 and CPz. Compared to controls, both the beta-and gamma-band bidirectional total and nonlinear information flows of the stroke group were significantly weaker. There is no significant difference in the direction of beta- and gamma-band information flow in stroke group. Conclusions The proposed method could effectively identify the information interaction between short time series. According to our experiment, the beta band mainly passes downward motor control information while the gamma band features upward sensory feedback information delivery. Our observation demonstrate that the center and contralateral sensorimotor cortex play a major role in lower limb motor control. The study further demonstrates that brain damage caused by stroke disrupts the bidirectional information interaction between cortex and effector muscles in the sensorimotor system, leading to motor dysfunction.


2009 ◽  
Vol 10 (1) ◽  
pp. 270 ◽  
Author(s):  
Mônica G Campiteli ◽  
Frederico M Soriani ◽  
Iran Malavazi ◽  
Osame Kinouchi ◽  
Carlos AB Pereira ◽  
...  

2021 ◽  
Vol 18 (32) ◽  
Author(s):  
Stanko Stanić ◽  
Bojan Baškot

Panel regression model may seem like an appealing solution in conditions of limited time series. This is often used as a shortcut to achieve deeper data set by setting several individual cases on the same time dimension, where cross units visually but not really multiply a time frame. Macroeconometrics of the Western Balkan region assumes short time series issue. Additionally, the structural brakes are numerous. Panel regression may seem like a solution, but there are some limitations that should be considered.


2013 ◽  
Vol 49 (12) ◽  
pp. 8017-8025 ◽  
Author(s):  
Pierre Nicolle ◽  
Vazken Andréassian ◽  
Eric Sauquet

Sign in / Sign up

Export Citation Format

Share Document