scholarly journals The lattice dislocation trapping mechanism at the ferrite/cementite interface in the Isaichev orientation relationship

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaemin Kim ◽  
Hadi Ghaffarian ◽  
Keonwook Kang

AbstractWe analyze the lattice dislocation trapping mechanism at the ferrite/cementite interface of the Isaichev orientation relationship by atomistic simulations combined with the anisotropic linear elasticity theory and disregistry analysis. We find that the lattice dislocation trapping ability is varied by initial position of the lattice dislocation. The lattice dislocation near the interface is attracted to the interface by the image force generated by the interface shear, while the lattice dislocation located far is either attracted to or repelled from the interface, or even oscillates around the introduced position, depending on the combination of the stress field induced by the misfit dislocation array and the image stress field induced by the lattice dislocation.

2021 ◽  
Author(s):  
Jaemin Kim ◽  
Hadi Ghaffarian ◽  
Keonwook Kang

Abstract We analyze the lattice dislocation trapping mechanism at the ferrite/cementite interface (FCI) of the Isaichev orientation relationship (OR) by atomistic simulations combined with the anisotropic linear elasticity theory and disregistry analysis. We find that the lattice dislocation trapping ability is varied by initial position of the lattice dislocation. The lattice dislocation near the interface is attracted to the interface by the image force generated by the interface shear, while the lattice dislocation located far is either attracted to or repelled from the interface, or even oscillates around the introduced position, depending on the combination of the stress field induced by the misfit dislocation array and the image stress field induced by the lattice dislocation.


2006 ◽  
Vol 312 ◽  
pp. 149-154 ◽  
Author(s):  
Ying Dai ◽  
Xing Ji ◽  
Lin Ye ◽  
Yiu Wing Mai

Since stress singularity was found at the interface end in current specimen of pullout test, interface shear strength (IFSS) obtained from the tests loses its rationality [2]. But a useful conclusion [2] is that when the wedge angle of the matrix is less than a critical angle, the singularity of stress field at the interface end of the specimen in micro-debond test nearly disappears. Following this conclusion, a conic specimen shown in Fig. 1 is presented, in which the wedge angle of the specimen is designed to be less than a critical angle in order to prevent the singular stress field occurred at the interface end. The conic specimen is designed for pullout test to avoid disadvantages inherent in the micro-debond test [3]. An axisymmetric model of fiber/matrix system with arbitrary wedge angles at the interface end is used for the determination of critical wedge angle. With the aid of asymptotic analysis and variable separation, eigenvalue, λ, could be determined by a characteristic determinant. For a given fiber-matrix system, a curve representing the relationship between the stress singularity index and wedge angle could be obtained by solving the characteristic determinant. We define the critical wedge angle, θcr, as the corresponding singularity index of – 0.005. The design of a conic pullout specimen is also discussed. FEM analysis is adopted to calculate the distribution of interfacial stresses near the interface end with different wedge angle. The results verify the rationality of the principle of the design of conic pullout specimen for IFSS measurement.


2014 ◽  
Vol 783-786 ◽  
pp. 515-520 ◽  
Author(s):  
Shuai Shao ◽  
Jian Wang ◽  
Amit Misra ◽  
Richard G. Hoagland

Experimental studies proved that structures and properties of misfit dislocations and their intersections (nodes) in semi-coherent interfaces strongly affect thermal and mechanical stability of interface. Employing atomistic simulations, we reveal that misfit dislocation lines can exhibit a spiral pattern (SP) or remain straight in association with dislocation character at nodes. By analyzing nodes formation processes in terms of kinetics and energetics, we found that the variation is ascribed to the competition between core energy of misfit dislocation and interface stacking fault energy with respect to coherent interface.


Author(s):  
Vasily Bulatov ◽  
Wei Cai

Chapter 1 introduced dislocations as dual objects permitting both atomistic and continuum descriptions. The subsequent Chapters 2 through 7 discussed various aspects of atomistic simulations and their application to dislocation modeling. In the rest of the book, from Chapter 8 to Chapter 11, we will be treating dislocations as continuum objects. This is a huge simplification that makes it possible to consider dislocation behavior on length and time scales well beyond reach of the atomistic simulations. The following chapters are organized in the order of increasing length and time scales. This particular chapter deals with the famous Peierls–Nabarro continuum model that is most closely related to the atomistic models discussed earlier. Fundamentally, dislocations are line defects producing distortions in an otherwise perfect crystal lattice. While this point of view is entirely correct, the atomistic models of dislocations can deal with only relatively small material volumes where every atom is individually resolved. Furthermore, having to keep track of all these atoms all the time limits the time horizon of atomistic simulations. On the other hand, when the host crystal is viewed as an elastic continuum, the linear elasticity theory of dislocations offers a variety of useful analytical and numerical solutions that are no longer subject to such constraints. Although quite accurate far away from the dislocation center, where the lattice distortions remain small, continuum theory breaks down near the dislocation center, where lattice discreteness and non-linearity of interatomic interactions become important. To obtain a more efficient description of crystal dislocations, some sort of bridging between the atomistic and continuum models is necessary. For example, it would be very useful to have a hybrid continuum–atomistic approach such that it retains the analytic nature of the continuum theory for the long-range elastic fields but also captures the essential non-linear effects in the atomic core. Bearing the names of Rudolf Peierls [86] and Frank Nabarro [87], the celebrated Peierls–Nabarro (PN) model is one such approach. Possibly the most attractive feature of the PN model is its simplicity.


2013 ◽  
Vol 2013 (0) ◽  
pp. _OS0104-1_-_OS0104-3_
Author(s):  
Masaki MORIYAMA ◽  
Ryusuke MATSUMOTO ◽  
Toru IKEDA ◽  
Noriyuki MIYAZAKI

Sign in / Sign up

Export Citation Format

Share Document