Lattice dislocation induced misfit dislocation evolution in semi-coherent {111} bimetal interfaces

Author(s):  
Alex Selimov ◽  
Shuozhi Xu ◽  
Youping Chen ◽  
David McDowell
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaemin Kim ◽  
Hadi Ghaffarian ◽  
Keonwook Kang

AbstractWe analyze the lattice dislocation trapping mechanism at the ferrite/cementite interface of the Isaichev orientation relationship by atomistic simulations combined with the anisotropic linear elasticity theory and disregistry analysis. We find that the lattice dislocation trapping ability is varied by initial position of the lattice dislocation. The lattice dislocation near the interface is attracted to the interface by the image force generated by the interface shear, while the lattice dislocation located far is either attracted to or repelled from the interface, or even oscillates around the introduced position, depending on the combination of the stress field induced by the misfit dislocation array and the image stress field induced by the lattice dislocation.


2021 ◽  
Author(s):  
Jaemin Kim ◽  
Hadi Ghaffarian ◽  
Keonwook Kang

Abstract We analyze the lattice dislocation trapping mechanism at the ferrite/cementite interface (FCI) of the Isaichev orientation relationship (OR) by atomistic simulations combined with the anisotropic linear elasticity theory and disregistry analysis. We find that the lattice dislocation trapping ability is varied by initial position of the lattice dislocation. The lattice dislocation near the interface is attracted to the interface by the image force generated by the interface shear, while the lattice dislocation located far is either attracted to or repelled from the interface, or even oscillates around the introduced position, depending on the combination of the stress field induced by the misfit dislocation array and the image stress field induced by the lattice dislocation.


Author(s):  
K.P.D. Lagerlöf ◽  
A.H. Heuer ◽  
T.E. Mitchell

It has been reported by Lally et. al. [1] that precipitates of hematite (Fe2O3, space group R3c) in a matrix of ilmenite (FeTiO3, space group R3) are lens shaped and flattened along the [0001]-direction. The coherency across the interface is lost by the introduction of a misfit dislocation network, which minimizes the strain due to the deviation in lattice parameters between the two phases [2]. The purpose of this paper is to present a new analysis of this network.


2014 ◽  
Vol 104 (23) ◽  
pp. 232111 ◽  
Author(s):  
Santino D. Carnevale ◽  
Julia I. Deitz ◽  
John A. Carlin ◽  
Yoosuf N. Picard ◽  
Marc De Graef ◽  
...  

2021 ◽  
Vol 27 (S1) ◽  
pp. 912-914
Author(s):  
Ari Blumer ◽  
Marzieh Baan ◽  
Zak Blumer ◽  
Jacob Boyer ◽  
Tyler J. Grassman

2016 ◽  
Vol 469 ◽  
pp. 106-111
Author(s):  
Enrique Martínez ◽  
D. Schwen ◽  
J. Hetherly ◽  
A. Caro

2015 ◽  
Vol 54 (11) ◽  
pp. 115501 ◽  
Author(s):  
Motoaki Iwaya ◽  
Taiji Yamamoto ◽  
Daisuke Iida ◽  
Yasunari Kondo ◽  
Mihoko Sowa ◽  
...  

1998 ◽  
Vol 73 (8) ◽  
pp. 1074-1076 ◽  
Author(s):  
Achim Trampert ◽  
Klaus H. Ploog ◽  
Eric Tournié

2002 ◽  
Vol 74 (9) ◽  
pp. 1663-1671 ◽  
Author(s):  
Raghani Pushpa ◽  
Shobhana Narasimhan

Close-packed metal surfaces and heteroepitaxial systems frequently display a structure consisting of regularly spaced misfit dislocations, with a network of domain walls separating face-centered cubic (fcc) and hexagonal close-packed (hcp) domains. These structures can serve as templates for growing regularly spaced arrays of nanoislands. We present a theoretical investigation of the factors controlling the size and shape of the domains, using Pt(111) as a model system. Upon varying the chemical potential, the surface structure changes from being unreconstructed to the honeycomb, wavy triangles, "bright stars", or Moiré patterns observed experimentally on Pt(111) and other systems. For the particular case of Pt(111), isotropically contracted star-like patterns are favored over uniaxially contracted stripes.


Sign in / Sign up

Export Citation Format

Share Document