wedge angle
Recently Published Documents


TOTAL DOCUMENTS

294
(FIVE YEARS 84)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
K I Matveev

Air ventilation of submerged surfaces of ship hulls is a promising technique for drag reduction. To ensure high performance of air cavities in a broad range of operational conditions, the cavity properties can be controlled with help of compact hydrodynamic actuators. In this study, a potential flow theory is applied to model an air cavity formed behind a wedge-shaped cavitator under a horizontal wall imitating a ship bottom. By varying the wedge angle, it is possible to achieve states with maximum drag reduction at given operational conditions. The dependence of the optimal wedge angle on Froude number and hull trim is investigated. The air-cavity ability to reduce frictional drag is found to increase with rising flow speed and bow-down hull trim.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Prabhugouda Mallanagouda Patil ◽  
Madhavarao Kulkarni

AbstractThe present study focuses on double diffusive nonlinear (quadratic) mixed convective flow of nanoliquid about vertical wedge with nonlinear temperature-density-concentration variations. This study is found to be innovative and comprises the impacts of quadratic mixed convection, magnetohydrodynamics, diffusion of nanoparticles and liquid hydrogen flow around a wedge. Highly coupled nonlinear partial differential equations (NPDEs) and boundary constraints have been used to model the flow problem, which are then transformed into a dimensionless set of equations utilizing non-similar transformations. Further, a set of NPDEs would be linearized with the help of Quasilinearization technique, and then, the linear partial differential equations are transformed into a block tri-diagonal system through using implicit finite difference scheme, which is solved using Verga’s algorithm. The study findings were explored through graphs for the fluid velocity, temperature, concentration, nanoparticle volume fraction distributions and its corresponding gradients. One of the important results of this study is that the higher wedge angle values upsurge the friction between the particles of the fluid and the wedge surface. Rising Schmidt number declines the concentration distribution and enhances the magnitude of Sherwood number. Nanofluid’s temperature increases with varying applied magnetic field. The present study has notable applications in the designing and manufacturing of wedge-shaped materials in space aircrafts, construction of dams, thermal systems, oil and gas industries, etc.


2021 ◽  
Vol 11 (22) ◽  
pp. 10678
Author(s):  
Bowen Du ◽  
Yuquan Zheng ◽  
Chao Lin ◽  
Hang Zhang

In a Fizeau interferometer, off-axis illumination will lead to fringe optimization. Primarily due to the unique structure of our interferometer, we first analyze the influence of the optical properties of the parallel plate as a part of the interferometer on the optimal incident angle. Generally, the incident angle determination is mainly based on the graphing method proposed by Langenbeck and the estimation formula proposed by Kajava. However, Langenbeck’s method is cumbersome, and the error of Kajava’s estimation formula is large. Based on the predecessors, this paper proposes a modified method of determining the optimal angle of incidence and further derives more accurate optimal angle expressions than Kajava’s. By simply substituting the wedge angle of the wedge cavity and the reflectivity of the cavity, the optimum incidence angle can be obtained immediately. Thus, it eliminates the tedious and complex process of finding the optimum incident angle by graphing method and makes the formula method the simplest method to find the optimum incident angle. Finally, the comparison of the interference intensity at the optimum incidence angle calculated by the improved method and normal incidence is given. It is found that the beam has a good suppression effect on the sub-peak when it is incident at the optimum incident angle calculated by the method in this paper.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kai Chen ◽  
Xiao Zhai ◽  
Tianjunke Zhou ◽  
Yu Deng ◽  
Beichen Zhang ◽  
...  

Abstract Objective To explore the characteristics of compensation of unfused lumbar region post thoracic fusion in Lenke 1 and 2 adolescent idiopathic scoliosis. Background Preserving lumbar mobility in the compensation is significant in controlling pain and maintaining its functions. The spontaneous correction of the distal unfused lumbar curve after STF has been widely reported, but previous study has not concentrated on the characteristics of compensation of unfused lumbar region post thoracic fusion. Method A total of 51 Lenke 1 and2 AIS patients were included, whose lowest instrumented vertebrae was L1 from January 2013 to December 2019. For further analysis, demographic data and coronal radiographic films were collected before surgery, at immediate erect postoperatively and final follow-up. The wedge angles of each unfused distal lumbar segments were measured, and the variations in each disc segment were calculated at the immediate postoperative review and final follow-up. Meanwhile, the unfused lumbar curve was divided into upper and lower parts, and we calculated their curve angles and compensations. Results The current study enrolled 41 females (80.4%) and 10 males (19.6%). Thirty-six patients were Lenke type 1, while 15 patients were Lenke type 2. The average main thoracic Cobb angle and thoracolumbar/lumbar Cobb angle were 44.1 ± 7.7°and 24.1 ± 9.3°, preoperatively. At the final follow-up, the disc wedge angle variation of L1/2, L2/3, L3/4, L4/5 and L5/S1 was 3.84 ± 5.96°, 3.09 ± 4.54°, 2.30 ± 4.53°, − 0.12 ± 3.89° and − 1.36 ± 2.80°, respectively. The compensation of upper and lower coronal lumbar curves at final follow-up were 9.22 ± 10.39° and − 1.49 ± 5.14°, respectively. Conclusion When choosing L1 as the lowest instrumented vertebrae, the distal unfused lumbar segments’ compensation showed a decreasing trend from the proximal end to the distal end. The adjacent L1/2 and L2/3 discs significantly contributed to this compensation.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1786
Author(s):  
Xianyan Zhou ◽  
Torgeir Welo ◽  
Jun Ma ◽  
Sigmund A. Tronvoll

Dimensional accuracy of incoming components is crucial for automated welding and assembly in mass volume production. However, thin-walled extrusions made to industrial standards show severe dimensional variations, including gap opening, sidewall inclination, local convexity, and so on. Thus, one major challenge is to provide a low-cost correction method to improve the dimensional accuracy at a level demanded by automated assembly and/or product fit-up. A novel correction method called transverse stretch and local bending (TSLB) has recently been developed, enabling one to efficiently correct the dimensional deviations in thin-walled, U-channel profiles at a low cost. However, the lack of in-depth understanding of the underlying mechanism makes it challenging to efficiently optimise and control the process. In this study, the feasibility of this new technique was experimentally validated by four groups of TSLB tests with different profile dimensions, showing a dimensional accuracy improvement of about 92% compared with the as-received parts. The evolution of the critical dimensional characteristics, including gap opening and bottom convexity, is analysed numerically throughout four stages consisting of inserting, releasing, calibration, and springback. It is found that the inserting stage greatly reduces the dimensional deviations in a pure bending state, while the calibration stages further minimise the deviations in the bending and transverse stretching combined state. In addition, the wedge angle of the tool is found to be critical to the dimensional accuracy improvement. The low wedge angle facilitates the correction of sidewall inclination and gap opening, while the high wedge angle contributes to mitigating bottom convexity. The overall outcome of this study enhances the fundamental understanding of the effects of in-process stretching and local-bending on the dimensional capabilities of U-channel extrusions. This can ultimately generate guidelines that will lead to new application areas of aluminium extrusions in highly competitive marketplaces.


Author(s):  
Hagninou E. V. Donnou ◽  
Drissa Boro ◽  
Jean Noé Fabiyi ◽  
Marius Tovoeho ◽  
Aristide B. Akpo

In the present work, the study and design of a horizontal axis wind turbine suitable for the Cotonou site were investigated on the coast of Benin. A statistical study using the Weibull distribution was carried out on the hourly wind data measured at 10 m from the ground by the Agency for Air Navigation Safety in Africa and Madagascar (ASECNA) over the period from January 1981 to December 2014. Then, the models, techniques, tools and approaches used to design horizontal axis wind turbines were presented and the wind turbine components characteristics were determined. The numerical design and assembly of these components were carried out using SolidWorks software. The results revealed that the designed wind turbine has a power of 571W. It is equipped with a permanent magnet synchronous generator and has three aluminum blades with NACA 4412 biconvex asymmetrical profile. The values obtained for the optimum coefficient of lift and drag are estimated at 1.196 and 0.0189 respectively. The blades are characterised by an attack optimum angle estimated at 6° and the wedge angle at 5°. Their length is 2.50 m and the maximum thickness is estimated at 0.032 m for a rope length of 0.27 m. The wind turbine efficiency is 44%. The computer program designed on SolidWorks gives three-dimensional views of the geometrical shape of the wind turbine components and their assembly has allowed to visualize the compact shape of the wind turbine after export via its graphical interface. The energy quantity that can be obtained from the wind turbine was estimated at 2712,718 kWh/year. This wind turbine design study is the first of its kind for the study area. In order to reduce the technological dependence and the import of wind energy systems, the results of this study could be used to produce lower cost wind energy available on our study site.


Author(s):  
Daniel J Riddoch ◽  
Nils Cwiekala ◽  
David A Hills

We describe a method for calculating the crack tip stress intensity factors for the problem of one or two cracks at the apex of an arbitrary angle wedge. The kernels for a dislocation in an arbitrary angle wedge described in part 1 of this paper are used extensively. Consideration is given to variations of crack length, crack angle and wedge angle.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1359
Author(s):  
Yaoyao Gao ◽  
Feng Kang ◽  
Jiangming Kan ◽  
Yutan Wang ◽  
Siyuan Tong

In order to investigate the cutting mechanical characteristics of Caragana Korshinskii (C.K.) branches and explore the optimal combination of cutting parameters to support the subsequent equipment development, this paper explores the relationship between branch diameter D, average cutting speed v, wedge angle β, slip cutting angle α, cutting height h, cutting gap t, moisture content M and peak cutting force by using a homemade swing-cut branch cutting test bench with peak cutting force of branches as the target value under unsupported and supported cutting methods, respectively, through single-factor tests. Based on the single-factor test, v, β, α and t were selected as the test factors, and a multi-factor test was conducted with the peak cutting force as the target. Test result: The best combination of unsupported cutting in the range of multi-factor test is v for 3.315 m·s−1, β for 20°, α for 20°, when the peak cutting force is 95.690 N. Supported cutting multi-factor test range to get the best combination of v for 3.36 m·s−1, β for 20°, α for 20°, t for 1.38 mm, when the peak cutting force is 53.082 N. The errors of the predicted peak cutting force and the measured peak cutting force of the obtained model were 1.3% and 3.9%, respectively, which prove that the cutting parameters were optimized reliably. This research can provide a theoretical basis for subsequent development the C.K. harvesting equipment.


2021 ◽  
pp. 32-34
Author(s):  
Kalpana Chhetri

BACKGROUND: The lordotic wedging and height of the presacral disc avert detrimental loads and shearing of the lumbar spine. Age and functional degenerations affect these causing spinal disarrays frequently requiring lumbar reconstructive surgery. Reinstating the disc height and wedging to its optimum healthy state is essential for accomplished spinal rehabilitation. The fourth and fth lumbar segments being most predisposed to mechanical pathophysiology and surgical interventions were evaluated in a north-east Indian population. MATERIALS & METHOD: The disc wedge angle, vertebral and disc heights and concavity index were measured in eighty lumbar segments comprising of twenty males and twenty females. RESULTS: The disc-wedge angle, anterior, middle, posterior disc heights and concavity index were as follows: 12.06±1.67°, 12.27±1.25mm,10.83±1.04mm,6.95±0.77mm,0.90±0.01at L4/L5 and 15.65±1.83°, 15.15±1.67mm, 11.32±1.68mm, 6.79±0.79mm, 0.90±0.01 at L5/S1 in males and 13.02±1.66°, 13.03±1.30mm, 11.86±1.23mm, 6.44±0.95mm,0.90±0.01 at L4/L5 and 16.89±1.71°,36.40 ±1.29mm, 16.04± 1.62mm, 12.31± 1.77mm, 6.06±0.94mm and 0.088 ± 0.02 in females. CONCLUSION: The disc wedge angles and anterior and middle disc heights were signicantly higher in females while the vertebral and posterior disc heights and convexity index were larger in males. The larger lordotic wedging of L5/S1 intervertebral disc preserves the spinal conformation. All above dimensions decreased with age in both genders. Our study standardizes quantitative referral data for research, diagnosis and prothesis to resolve the existing discordances.


Sign in / Sign up

Export Citation Format

Share Document