scholarly journals Phase-space studies of backscattering diffraction of defective Schrödinger cat states

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Damian Kołaczek ◽  
Bartłomiej J. Spisak ◽  
Maciej Wołoszyn

AbstractThe coherent superposition of two well separated Gaussian wavepackets, with defects caused by their imperfect preparation, is considered within the phase-space approach based on the Wigner distribution function. This generic state is called the defective Schrödinger cat state due to this imperfection which significantly modifies the interference term. Propagation of this state in the phase space is described by the Moyal equation which is solved for the case of a dispersive medium with a Gaussian barrier in the above-barrier reflection regime. Formally, this regime constitutes conditions for backscattering diffraction phenomena. Dynamical quantumness and the degree of localization in the phase space of the considered state as a function of its imperfection are the subject of the performed analysis. The obtained results allow concluding that backscattering communication based on the defective Schrödinger cat states appears to be feasible with existing experimental capabilities.

2009 ◽  
Vol 23 (25) ◽  
pp. 5049-5066
Author(s):  
JEONG RYEOL CHOI ◽  
KYU HWANG YEON

The Wigner distribution function (WDF) for the time-dependent quadratic Hamiltonian system is investigated in the squeezed Schrödinger cat states with the use of Lewis–Riesenfeld theory of invariants. The nonclassical aspects of the system produced by superposition of two distinct squeezed states are analyzed with emphasis on their application into special systems beyond simple harmonic oscillator. An application of our development to the measurement of quantum state by reconstructing the WDF via Autler–Townes spectroscopy is addressed. In addition, we considered particular models such as Cadirola–Kanai oscillator, frequency stable damped harmonic oscillator, and harmonic oscillator with time-variable frequency as practical applications with the object of promoting the understanding of nonclassical effects associated with the WDF.


2021 ◽  
Vol 62 ◽  
pp. 67-84
Author(s):  
Laarni B. Natividad ◽  
◽  
Job A. Nable

The three main objects that serve as the foundation of quantum mechanics on phase space are the Weyl transform, the Wigner distribution function, and the $\star$-product of phase space functions. In this article, the $\star$-product of functions on the Euclidean motion group of rank three, $\mathrm{E}(3)$, is constructed. $C^*$-algebra properties of $\star_s$ on $\mathrm{E}(3)$ are presented, establishing a phase space symbol calculus for functions whose parameters are translations and rotations. The key ingredients in the construction are the unitary irreducible representations of the group.


2006 ◽  
Vol 20 (11n13) ◽  
pp. 1956-1967 ◽  
Author(s):  
KURT BERNARDO WOLF

This contribution summarizes work on finite, non-cyclic Hamiltonian systems —in particular the one-dimensional finite oscillator—, in conjunction with a Lie algebraic definition of the (meta-) phase space of finite systems, and a corresponding Wigner distribution function for the state vectors. The consistency of this approach is important for the strategy of fractionalization of a finite Fourier transform, and the contraction of finite unitary to continuous symplectic transformations of Hamiltonian systems.


Sign in / Sign up

Export Citation Format

Share Document