scholarly journals Publisher Correction: Uniaxially fixed mechanical boundary condition elicits cellular alignment in collagen matrix with induction of osteogenesis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeonghyun Kim ◽  
Keiichi Ishikawa ◽  
Junko Sunaga ◽  
Taiji Adachi
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeonghyun Kim ◽  
Keiichi Ishikawa ◽  
Junko Sunaga ◽  
Taiji Adachi

AbstractOsteocytes differentiated from osteoblasts play significant roles as mechanosensors in modulating the bone remodeling process. While the well-aligned osteocyte network along the trabeculae with slender cell processes perpendicular to the trabeculae surface is known to facilitate the sensing of mechanical stimuli by cells and the intracellular communication in the bone matrix, the mechanisms underlying osteocyte network formation remains unclear. Here, we developed a novel in vitro collagen matrix system exerting a uniaxially-fixed mechanical boundary condition on which mouse osteoblast-like MC3T3-E1 cells were subcultured, evoking cellular alignment along the uniaxial boundary condition. Using a myosin II inhibitor, blebbistatin, we showed that the intracellular tension via contraction of actin fibers contributed to the cellular alignment under the influence of isometric matrix condition along the uniaxially-fixed mechanical boundary condition. Furthermore, the cells actively migrated inside the collagen matrix and promoted the expression of osteoblast and osteocyte genes with their orientations aligned along the uniaxially-fixed boundary condition. Collectively, our results suggest that the intracellular tension of osteoblasts under a uniaxially-fixed mechanical boundary condition is one of the factors that determines the osteocyte alignment inside the bone matrix.


Author(s):  
A. H. Akbarzadeh ◽  
Z. T. Chen

Analytical solutions are acquired for radially polarized and magnetized rotating magnetoelectroelastic hollow and solid cylinders. The cylinders are orthotropic and infinitely long and are subjected to a combination of thermal, magnetic, electric, and mechanical loadings. The symmetric and steady state heat conduction equation is solved based on a general form of thermal boundary conditions to give the temperature distribution along the radial direction of cylinders. The governing ordinary differential equations in terms of displacement, electric potential, and magnetic potential with considering the thermal and inertial effects are obtained and solved in an exact form using the straightforward successive decoupling method. Numerical results are illustrated to reveal influences of thermal boundary condition, angular velocity, aspect ratio, and magneto-electro-mechanical boundary condition on the multiphysical responses of the rotating hollow and solid cylinders. The results are validated with those available in the literature.


Sign in / Sign up

Export Citation Format

Share Document