scholarly journals Uniaxially fixed mechanical boundary condition elicits cellular alignment in collagen matrix with induction of osteogenesis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeonghyun Kim ◽  
Keiichi Ishikawa ◽  
Junko Sunaga ◽  
Taiji Adachi

AbstractOsteocytes differentiated from osteoblasts play significant roles as mechanosensors in modulating the bone remodeling process. While the well-aligned osteocyte network along the trabeculae with slender cell processes perpendicular to the trabeculae surface is known to facilitate the sensing of mechanical stimuli by cells and the intracellular communication in the bone matrix, the mechanisms underlying osteocyte network formation remains unclear. Here, we developed a novel in vitro collagen matrix system exerting a uniaxially-fixed mechanical boundary condition on which mouse osteoblast-like MC3T3-E1 cells were subcultured, evoking cellular alignment along the uniaxial boundary condition. Using a myosin II inhibitor, blebbistatin, we showed that the intracellular tension via contraction of actin fibers contributed to the cellular alignment under the influence of isometric matrix condition along the uniaxially-fixed mechanical boundary condition. Furthermore, the cells actively migrated inside the collagen matrix and promoted the expression of osteoblast and osteocyte genes with their orientations aligned along the uniaxially-fixed boundary condition. Collectively, our results suggest that the intracellular tension of osteoblasts under a uniaxially-fixed mechanical boundary condition is one of the factors that determines the osteocyte alignment inside the bone matrix.

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 474
Author(s):  
Silvia Todros ◽  
Silvia Spadoni ◽  
Edoardo Maghin ◽  
Martina Piccoli ◽  
Piero G. Pavan

Muscular tissue regeneration may be enhanced in vitro by means of mechanical stimulation, inducing cellular alignment and the growth of functional fibers. In this work, a novel bioreactor is designed for the radial stimulation of porcine-derived diaphragmatic scaffolds aiming at the development of clinically relevant tissue patches. A Finite Element (FE) model of the bioreactor membrane is developed, considering two different methods for gripping muscular tissue patch during the stimulation, i.e., suturing and clamping with pliers. Tensile tests are carried out on fresh and decellularized samples of porcine diaphragmatic tissue, and a fiber-reinforced hyperelastic constitutive model is assumed to describe the mechanical behavior of tissue patches. Numerical analyses are carried out by applying pressure to the bioreactor membrane and evaluating tissue strain during the stimulation phase. The bioreactor designed in this work allows one to mechanically stimulate tissue patches in a radial direction by uniformly applying up to 30% strain. This can be achieved by adopting pliers for tissue clamping. Contrarily, the use of sutures is not advisable, since high strain levels are reached in suturing points, exceeding the physiological strain range and possibly leading to tissue laceration. FE analysis allows the optimization of the bioreactor configuration in order to ensure an efficient transduction of mechanical stimuli while preventing tissue damage.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3234 ◽  
Author(s):  
Mike Barbeck ◽  
Ole Jung ◽  
Xin Xiong ◽  
Rumen Krastev ◽  
Tadas Korzinskas ◽  
...  

The present publication reports the purification effort of two natural bone blocks, that is, an allogeneic bone block (maxgraft®, botiss biomaterials GmbH, Zossen, Germany) and a xenogeneic block (SMARTBONE®, IBI S.A., Mezzovico-Vira, Switzerland) in addition to previously published results based on histology. Furthermore, specialized scanning electron microscopy (SEM) and in vitro analyses (XTT, BrdU, LDH) for testing of the cytocompatibility based on ISO 10993-5/-12 have been conducted. The microscopic analyses showed that both bone blocks possess a trabecular structure with a lamellar subarrangement. In the case of the xenogeneic bone block, only minor remnants of collagenous structures were found, while in contrast high amounts of collagen were found associated with the allogeneic bone matrix. Furthermore, only island-like remnants of the polymer coating in case of the xenogeneic bone substitute seemed to be detectable. Finally, no remaining cells or cellular remnants were found in both bone blocks. The in vitro analyses showed that both bone blocks are biocompatible. Altogether, the purification level of both bone blocks seems to be favorable for bone tissue regeneration without the risk for inflammatory responses or graft rejection. Moreover, the analysis of the maxgraft® bone block showed that the underlying purification process allows for preserving not only the calcified bone matrix but also high amounts of the intertrabecular collagen matrix.


Author(s):  
Clayton J. Underwood ◽  
Laxminarayanan Krishnan ◽  
Allen Fung ◽  
Shawn Reese ◽  
James B. Hoying ◽  
...  

Previously we have found that in addition to mechanical strain, an anchored boundary condition alone can alter the organization of microvessel outgrowth during in vitro angiogenesis [1]. Microvessels were found to align parallel to the long axis of the anchored gel construct after 6 days in vitro. However, unanchored cultures did not show alignment of microvessels. This ability to control the direction of angiogenesis has immense implications for engineering prevascularized grafts and tissues in vitro, therefore an understanding of this process is important. The goal of this study was to first determine whether or not the underlying collagen matrix aligns similar to microvessels, and second to determine the timing of this alignment.


BIO-PROTOCOL ◽  
2014 ◽  
Vol 4 (4) ◽  
Author(s):  
Aurélie Tormo ◽  
Christian Beauséjour ◽  
Jean-François Gauchat
Keyword(s):  

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 765
Author(s):  
Qianbin Zhao ◽  
Tim Cole ◽  
Yuxin Zhang ◽  
Shi-Yang Tang

Organ-on-a-chip (OOC) uses the microfluidic 3D cell culture principle to reproduce organ- or tissue-level functionality at a small scale instead of replicating the entire human organ. This provides an alternative to animal models for drug development and environmental toxicology screening. In addition to the biomimetic 3D microarchitecture and cell–cell interactions, it has been demonstrated that mechanical stimuli such as shear stress and mechanical strain significantly influence cell behavior and their response to pharmaceuticals. Microfluidics is capable of precisely manipulating the fluid of a microenvironment within a 3D cell culture platform. As a result, many OOC prototypes leverage microfluidic technology to reproduce the mechanically dynamic microenvironment on-chip and achieve enhanced in vitro functional organ models. Unlike shear stress that can be readily generated and precisely controlled using commercial pumping systems, dynamic systems for generating proper levels of mechanical strains are more complicated, and often require miniaturization and specialized designs. As such, this review proposes to summarize innovative microfluidic OOC platforms utilizing mechanical actuators that induce deflection of cultured cells/tissues for replicating the dynamic microenvironment of human organs.


1962 ◽  
Vol 237 (11) ◽  
pp. 3555-3559
Author(s):  
William P. Deiss ◽  
Leila B. Holmes ◽  
C. Conrad Johnston
Keyword(s):  

2007 ◽  
Vol 539-543 ◽  
pp. 710-715
Author(s):  
Kotaro Kuroda ◽  
Ryoichi Ichino ◽  
Masazumi Okido

Hydroxyapatite (HAp) coatings were formed on cp titanium plates and rods by the thermal substrate method in an aqueous solution that included 0.3 mM Ca(H2PO4)2 and 0.7 mM CaCl2. The coating experiments were conducted at 40-140 oC and pH = 8 for 15 or 30 min. The properties for the coated samples were studied using XRD, EDX, FT-IR, and SEM. All the specimens were covered with HAp, which had different surface morphologies such as net-like, plate-like and needle-like. After cleaning and sterilization, all the coated specimens were subjected to in vivo and vitro testing. In the in vitro testing, the mouse osteoblast-like cells (MC3T3-E1) were cultured on the coated and non-coated specimens for up to 30 days. Moreover, the specimens (φ2 x 5 mm) were implanted in rats femoral for up to 8 weeks, the osseoinductivity on them were evaluated. In in vitro evaluations, there were not significant differences between the different surface morphologies. In in vivo evaluations, however, two weeks postimplantation, new bone formed on both the HAp coated and non-coated titanium rods in the cancellous and cortical bone. The bone-implant contact ratio, which was used for the evaluation of new bone formation, was significantly dependent on the surface morphology of the HAp, and the results demonstrated that the needle-like coating appears to promote rapid bone formation.


Sign in / Sign up

Export Citation Format

Share Document