scholarly journals Structure of 3He

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. D. Morley

AbstractUsing electron scattering data, the diffraction pattern off $$^{3}$$ 3 He shows it to be an equilateral triangle possessing dihedral D$$_{3}$$ 3 point group symmetry (PGS). Previous work showed that $$^{4}$$ 4 He is a 3-base pyramid with C$$_{3v}$$ 3 v PGS. $$^{6}$$ 6 Li is predicted to have C$$_{2v}$$ 2 v PGS. As nuclear $$A \rightarrow $$ A → large, atomic nuclei enter into the ‘protein folding problem’ with many possible groundstate PGS competing for lowest energy.

1975 ◽  
Vol 53 (7) ◽  
pp. 723-738 ◽  
Author(s):  
B. C. Sanctuary ◽  
R. F. Snider

The gas kinetic theory of nuclear magnetic relaxation of a polyatomic gas, as formulated in the previous paper, is evaluated for ZX3Y molecules relaxing via a dipolar coupling Hamiltonian. Stress is given to a proper treatment of point group symmetry, here C3v, and the possibility of molecular inversion is included. The detailed formula for the spin traces is however restricted to X nuclei with spin 1/2. A subsequent paper uses these results to elucidate the structure of the high density dependence of T1 forCF3H.


Nanoscale ◽  
2017 ◽  
Vol 9 (30) ◽  
pp. 10596-10600 ◽  
Author(s):  
Lei Xu ◽  
Ziba Zangeneh ◽  
Ravi Yadav ◽  
Stanislav Avdoshenko ◽  
Jeroen van den Brink ◽  
...  

A remarkably large magnetic anisotropy energy of 305 K is computed by quantum chemistry methods for divalent Fe2+ d6 substitutes at Li-ion sites with D6h point-group symmetry within the solid-state matrix of Li3N.


2021 ◽  
Vol 103 (10) ◽  
Author(s):  
Y. J. Jin ◽  
Z. J. Chen ◽  
X. L. Xiao ◽  
H. Xu

IUCrData ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Yoshiyuki Mizuhata ◽  
Yamato Omatsu ◽  
Norihiro Tokitoh

The molecule of the title compound, C36H60Si6, exhibits point group symmetryCi, with the centre of inversion located at the centre of the Si6ring. The Si6ring has a chair conformation. In the crystal, molecules are linkedviaC—H...π(allyl) interactions.


Author(s):  
Bougar Sarr ◽  
Abdou Mbaye ◽  
Cheikh Abdoul Khadir Diop ◽  
Mamadou Sidibe ◽  
Yoann Rousselin

The organic–inorganic title salt, (C6H16N)2[Sn(C2O4)2Cl2] or ( i Pr2NH2)2[Sn(C2O4)2Cl2], was obtained by reacting bis(diisopropylammonium) oxalate with tin(IV) chloride dihydrate in methanol. The SnIV atom is coordinated by two chelating oxalate ligands and two chloride ions in cis positions, giving rise to an [Sn(C2O4)2Cl2]2− anion (point group symmetry 2), with the SnIV atom in a slightly distorted octahedral coordination. The cohesion of the crystal structure is ensured by the formation of N—H...O hydrogen bonding between (iPr2NH2)+ cations and [SnCl2(C2O4)2]2− anions. This gives rise to an infinite chain structure extending parallel to [101]. The main inter-chain interactions are van der Waals forces. The electronic spectrum of the title compound displays only one high intensity band in the UV region assignable to ligand–metal ion charge-transfer (LMCT) transitions. An IR spectrum was also recorded and is discussed.


1971 ◽  
Vol 2 (12) ◽  
pp. 3485-3486 ◽  
Author(s):  
Santiago Harriague ◽  
Harry A. Leibovich

1997 ◽  
Vol 95 (3-4) ◽  
pp. 131-150 ◽  
Author(s):  
Thorstein Thorsteinsson ◽  
David L. Cooper ◽  
Joseph Gerratt ◽  
Mario Raimondi

Sign in / Sign up

Export Citation Format

Share Document