scholarly journals Construction of stable mouse artificial chromosome from native mouse chromosome 10 for generation of transchromosomic mice

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Satoshi Abe ◽  
Kazuhisa Honma ◽  
Akane Okada ◽  
Kanako Kazuki ◽  
Hiroshi Tanaka ◽  
...  

AbstractMammalian artificial chromosomes derived from native chromosomes have been applied to biomedical research and development by generating cell sources and transchromosomic (Tc) animals. Human artificial chromosome (HAC) is a precedent chromosomal vector which achieved generation of valuable humanized animal models for fully human antibody production and human pharmacokinetics. While humanized Tc animals created by HAC vector have attained significant contributions, there was a potential issue to be addressed regarding stability in mouse tissues, especially highly proliferating hematopoietic cells. Mouse artificial chromosome (MAC) vectors derived from native mouse chromosome 11 demonstrated improved stability, and they were utilized for humanized Tc mouse production as a standard vector. In mouse, however, stability of MAC vector derived from native mouse chromosome other than mouse chromosome 11 remains to be evaluated. To clarify the potential of mouse centromeres in the additional chromosomes, we constructed a new MAC vector from native mouse chromosome 10 to evaluate the stability in Tc mice. The new MAC vector was transmitted through germline and stably maintained in the mouse tissues without any apparent abnormalities. Through this study, the potential of additional mouse centromere was demonstrated for Tc mouse production, and new MAC is expected to be used for various applications.

2021 ◽  
Author(s):  
Satoshi Abe ◽  
Kazuhisa Honma ◽  
Akane Okada ◽  
Kanako Kazuki ◽  
Hiroshi Tanaka ◽  
...  

Abstract Mammalian artificial chromosomes derived from native chromosomes have been applied to biomedical research and development by generating cell sources and transchromosomic (Tc) animals. Human artificial chromosome (HAC) is a precedent chromosomal vector which achieved generation of valuable humanized animal models for fully human antibody production and human pharmacokinetics. While humanized Tc animals created by HAC vector have attained significant contributions, there was a potential issue to be addressed regarding stability in mouse tissues, especially highly proliferating hematopoietic cells. Mouse artificial chromosome (MAC) vectors derived from native mouse chromosome 11 demonstrated improved stability, and they were utilized for humanized Tc mouse production as a standard vector. In mouse, however, stability of MAC vector derived from native mouse chromosome other than mouse chromosome 11 remains to be evaluated. To clarify the potential of mouse centromeres in the additional chromosomes, we constructed a new MAC vector from native mouse chromosome 10 to evaluate the stability in Tc mice. The new MAC vector was transmitted through germline and stably maintained in the mouse tissues without any apparent abnormalities. Through this study, the potential of additional mouse centromere was demonstrated for Tc mouse production, and new MAC is expected to be used for various applications.


1994 ◽  
Vol 24 (7) ◽  
pp. 1721-1723 ◽  
Author(s):  
Michael Nehls ◽  
Karsten Lüno ◽  
Michael Schorpp ◽  
Sabine Krause ◽  
Uta Matysiak-Scholze ◽  
...  

Genetics ◽  
2002 ◽  
Vol 161 (4) ◽  
pp. 1651-1659 ◽  
Author(s):  
Elena de la Casa-Esperón ◽  
J Concepción Loredo-Osti ◽  
Fernando Pardo-Manuel de Villena ◽  
Tammi L Briscoe ◽  
Jan Michel Malette ◽  
...  

AbstractWe observed that maternal meiotic drive favoring the inheritance of DDK alleles at the Om locus on mouse chromosome 11 was correlated with the X chromosome inactivation phenotype of (C57BL/ 6-Pgk1a × DDK)F1 mothers. The basis for this unexpected observation appears to lie in the well-documented effect of recombination on meiotic drive that results from nonrandom segregation of chromosomes. Our analysis of genome-wide levels of meiotic recombination in females that vary in their X-inactivation phenotype indicates that an allelic difference at an X-linked locus is responsible for modulating levels of recombination in oocytes.


1996 ◽  
Vol 7 (2) ◽  
pp. 163-163
Author(s):  
G. C. Voss ◽  
H. Jockusch

Genomics ◽  
1996 ◽  
Vol 34 (3) ◽  
pp. 430-432 ◽  
Author(s):  
Robert A. White ◽  
Rowland T. Hughes ◽  
Linda R. Adkison ◽  
Gail Bruns ◽  
Leonard I. Zon

1977 ◽  
Vol 19 (1) ◽  
pp. 7-13 ◽  
Author(s):  
P. McBreen ◽  
K.G. Orkwiszewski ◽  
C.J. Chern ◽  
W.J. Mellman ◽  
C.M. Croce

Genomics ◽  
1999 ◽  
Vol 62 (1) ◽  
pp. 123-128 ◽  
Author(s):  
Jan Klysik ◽  
Wei-Wen Cai ◽  
Chun Yang ◽  
Allan Bradley

Sign in / Sign up

Export Citation Format

Share Document